The 'suspend state' is meant to track whether a window is likely to be
visible any time soon. The hueristics for this are as follows:
* If a window is hidden, it will enter the 'hidden' state.
* If a window is visible, and unobscured, it will enter the 'active'
state.
* If a window is visible, but obscured by another window, it will enter
the 'hidden' state.
* If there is a mapped clone of a window, it will enter the 'active'
state.
* If the window has been in the 'hidden' state for 3 seconds, it will
enter the 'suspended' state.
This will eventually be communicated to Wayland clients so that they can
change their behaviour to e.g. save power.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3019>
With window_is_terminal gone, "strict" and "smart" focus mode have no
behavioural difference. Let's broaden the scope of strict focus mode,
such that windows never automatically focus unless they are an ancestor
to the transient.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3063>
As noted in the comments of window_is_terminal, this is a hack. This
code has not been touched for the better part of a decade. App res_class
tends to differ between Wayland and X11, so it is likely that none of
these apps have been recognised as terminals under Wayland ever. Also,
there are reports that strict focus mode also does not work under X11,
likely due to changes in these terminal apps over the years resulting
in different res_class than those manually specified in here. Let's remove
this hack and change strict focus mode accordingly.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3063>
Current behavior pushes a window which receives focus to the start of
the MRU list on every workspace it is on. By focusing a sticky window
the default focus on all other workspaces changes as well. This is fine
for sticky windows explicitly marked as sticky by the user but if a
window is on a secondary output and workspaces are only on the primary
output the behavior is unexpected. Instead we want the window to be the
default focus only on the current workspace but also keep those windows
in a relative MRU order to each other on all workspaces.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2681
Fixes: 058981dc1 ("workspace: Focus the default window only if no window is focused")
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2909>
We are attempting to show windows that do not yet have a
surface/buffer, this makes GNOME Shell avoid transitions
for these windows.
Since on Wayland X11 windows are also Wayland surfaces,
this check is also valid for these, and is thus made more
generic to also cater for these windows.
Eventually, meta_window_update_visibility() is called
when the surface gets its buffer, so the window can be
neatly animated.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2611
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2975>
When selecting the default focus window, is_focusable() was not
considering the new conditions for whether a window should be shown or
hidden that were added to meta_window_should_be_showing() in 39942974.
As a result the default focus window could end up a window already
hidden or hidden once meta_window_flush_calc_showing() is called by
meta_window_focus() when focusing the default window. This would cause
meta_window_focus() to fail, which is an issue if it prevents us from
unfocusing a window when it is getting unmanaged.
Fixes: 399429742 ("x11: Integrate frames client into Mutter")
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2644
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2962>
Normally, mutter implicitly allows a window being shown to take
focus. This is normally desired, except it steals input from
GNOME Shell self. Avoid focusing the just shown window in those
situations.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2878>
Ensure we preserve the fast zero-copy paths in Xwayland fullscreen
windows, instead of maybe rendering the client surface on top of the
frame surface, and providing the latter to the compositor.
To achieve this, additionally synchronize frame state when
recalculating features (e.g. after fullscreen/unfullscreen), and
account for this new condition when creating or destroying frames.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2797>
This looks like a bug: There's no reason why windows which advertise
min-size hints that are exactly the size of the workarea should not be
allowed to maximize, so change the checks here to allow for that.
The commit message of 7f64d6b9 also makes the point that this was not
intended, as it says "larger than".
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2873>
After !2489, the active workspace's MRU list is now used to pick
the next focus window instead of the stack order.
This list is currently only updated on focus, which can lead to
surprising behavior when closing a window after activating its
ShellApp in the shell.
That is because raising a window (as part of shell_app_activate())
will only change the stacking order, so when closing the active
app window, the focus will switch to whatever had focus before the
app was activated, not the app's next window.
In order to allow gnome-shell to address this, add a new
raise_and_make_recent() method that also adjust the MRU order.
https://gitlab.gnome.org/GNOME/mutter/-/issues/2540
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2866>
When modal dialogs are attached, and we set the parent/transient-for
after setting the modal type, the attachedness isn't updated. This is
(apparently) not the case for X11 windows, as they go through a
unmanage/manage dance avoiding the issue.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2810>
The previous logic tried to keep the position of the top left corner of
the window relative to the top left corner of the monitor. This allowed
the window to move out of the target monitor. This change keeps the
proportions of the distance between the window and the monitor borders
instead if possible. Otherwise it keeps the relative position of the
center of the window clamped to [0,1] to make sure the window lands on
the right output.
This also slightly changes what monitor is considered to be on: the
monitor which contains the center of the window and, if the center is on
no monitor, the monitor wich overlaps the most with the window.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2591>
This is a public API change. Add device/sequence parameters to this
operation, so that window dragging and resizing can stick to one
set of pointing events of them all.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
Since MetaWindowDrag took a lot of this code to handle window drags
internally with less interactions with the rest of the stack, this
code in display/window/keybindings is unused.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
Flip the switch in using MetaWindowDrag, leaving display grab
ops and a bunch other code unused. Some places checked the grab op
and/or window in complex ways, others just checked for grab existence
and should now look for clutter ones, and others already were already
doing this in addition.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
The final effect of this boolean can now be expressed through the
META_GRAB_OP_WINDOW_FLAG_UNCONSTRAINED flag to MetaGrabOp. Use that
in the relevant places, and drop the argument.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
Now that it is called from a single place, there's a few arguments
that are unnecessary:
- button and modifiers are unused
- already_grabbed was originally added to handle grab transitions between
window menus (GtkMenus, back in the day) with display grabs. It's no
longer necessary now
- frame_action can be passed through the META_GRAB_OP_WINDOW_FLAG UNCONSTRAINED
flag
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
There is no longer reason to call meta_display_begin_grab_op() except
for window grab operations, and meta_window_begin_grab_op() is a
perfectly fine entry point for all window grab operations.
Move away from meta_display_begin_grab_op().
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
Currently, it is thought out to be called with META_GRAB_OP_KEYBOARD*
grab op parameters. Make it more generic so it can also be called for
pointer operations (avoiding pointer warping in that situation).
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
Unlike the comment suggests, this piece of event handling manages
the ungrabbing of a window on button press in the following 2
conditions:
- If a keyboard grab operation was triggered, the window does
additionally follow the pointer, and first button press ends
the grab.
- If a button-press grab is ongoing on the window, but more buttons
are pressed.
We can simplify this to just happen every time a button press event
is received while a window grab op is ongoing. The only case where
this might diverge a bit is same button presses from different
pointer devices, and it's not a big stretch to also undo the grab
in that situation.
This also happens to make the "button" argument in
meta_display_begin_grab_op() completely unused.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
This piece of event handling only applies on windows receiving events while
the display is ungrabbed (i.e. for raising it, or beginning a move/resize
operation).
Move the checks on the current grab operation outside of window.c and into
events.c, so all checks about the current grab operation move closer to the
main event handler.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>