Mutter can play sounds in some contexts and also provides an API
for libmutter users to do so using libcanberra internally.
In some specific use cases of Mutter, we would like to not depend
on libcanberra and not have any sound playing feature by default.
The changes keeps the sound player API but make it no-op if the
sound_player feature is disabled to not make it possible to break
a gnome-shell build.
See https://gitlab.gnome.org/GNOME/gnome-shell/-/merge_requests/2270
for relevant discussion
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2375>
gnome-desktop is used to retrieve the monitor vendor name which in some
use cases is not needed as it brings a bunch of gnome-desktop unwanted
dependencies.
The change makes mutter fallback to an "Undefined" vendor name if it is
built without gnome-desktop
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2317>
When using Xwayland-on-demand (default), if the (experimental) autoclose
features is enabled, we can rely on Xwayland's auto-terminate feature
instead of explicitly killing the Xwayland process.
With it, gone is the mechanism that was added to check the X11 clients
connected and their executable to check whether we can (safely) kill
Xwayland.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1794>
The connection to the Xserver for the X11 window manager part of mutter
even on Wayland may prevent the Xserver from shutting down.
Currently, what mutter does is to check the X11 clients still connected
to Xwayland using the XRes extension, with a list of X11 clients that
can be safely ignored (typically the GNOME XSettings daemon, the IBus
daemon, pulseaudio and even mutter window manager itself).
When there is just those known clients remaining, mutter would kill
Xwayland automatically.
But that's racy, because between the time mutter checks with Xwayland
the remaining clients and the time it actually kills the process, a new
X11 client might have come along and won't be able to connect to
Xwayland that mutter is just about to kill.
Because of that, the feature “autoclose-xwayland” is marked as an
experimental feature in mutter and not enabled by default.
Thankfully, the Xserver has all it takes to manage that already, and
is even capable of terminating itself once all X11 clients are gone (the
-terminate option on the command line).
With XFixes version 6, the X11 clients can declare themselves
"terminatable", so that the Xserver could simply ignore those X11
clients when checking the remaining clients and terminate itself
automatically.
Use that mechanism to declare mutter's own connection to the Xserver as
"terminatable" when Xwayland is started on demand so that it won't hold
Xwayland alive for the sole purpose of mutter itself.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1794>
To utilize the API provided by libsystemd it would be better to
create a separate HAVE_LIBSYSTEMD configuration option instead of
having to rely on HAVE_NATIVE_BACKEND.
For now this will be utilized for getting the control group of a
MetaWindow.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1960>
Current Xwayland has marked the command line option "-listen" as
deprecated in favor of "-listenfd".
Use the pkg-config variable "have_listenfd" (if available) from Xwayland
to determine if we should use that option, to avoid a deprecation
warning when spawning Xwayland.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1682>
Currently, mutter checks for the presence of X11 windows to decide
whether or not Xwayland can be terminated, when Xwayland is started on
demand.
Unfortunately, not all X11 clients will map a window all the time, an
X11 client may keep the X11 connection opened after closing all its
windows. In that case, we may terminate Xwayland while there are some
X11 client connected still, and terminating Xwayland will also kill
those X11 clients.
To avoid that issue, check the X11 clients actually connected using the
XRes extension. The XRes extension provides the PID of the (local) X11
clients connected to the Xserver, so we need to match that against the
actual executable names, and compare with a list of known executables
that we can safely ignore, such as ibus-x11 or gsd-xsettings.
We also check against our own executable name, considering that the X11
window manager is also an X11 client connected to the Xserver.
Also, XRes returning the PID of local clients only is not a problem
considering that Xwayland does not listen to remote connections.
However, if the user spawns a client remotely on another system using
ssh tunneling (ssh -X), only clients which actually map a window will
be accounted for.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1537
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1671>
If this call is available, we can turn libX11 IO errors (fatal by definition)
into something we can recover from. Try to dispose all X11 resources and close
the display instead, so the compositor can survive the event.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1447
Add MetaAnonymousFile, an abstraction around anonymous read-only files.
Files can be created by calling meta_anonymous_file_new(), passing the
data of the file. Subsequent calls to meta_anonymous_file_open_fd()
return a fd that's ready to be sent over the socket.
When mapmode is META_ANONYMOUS_FILE_MAPMODE_PRIVATE the fd is only
guaranteed to be mmap-able readonly with MAP_PRIVATE but does not
require duplicating the file for each resource when memfd_create is
available. META_ANONYMOUS_FILE_MAPMODE_SHARED may be used when the
client must be able to map the file with MAP_SHARED but it also means
that the file has to be duplicated even when memfd_create is available.
Pretty much all of this code was written for weston by Sebastian Wick,
see https://gitlab.freedesktop.org/wayland/weston/merge_requests/240.
Co-authored-by: Sebastian Wick <sebastian@sebastianwick.net>
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1012
This is used by GDK and the X11 bits, but may also be used for
other initialization services we might need to run along with
Xwayland initialization.
However, as the -initfd argument in Xwayland is a fairly new
feature, add some meson build-time checks so that the feature
is handled transparently while allowing to explicitly set/unset
it.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/945
The include <sys/random.h> was added to glibc-2.25, previously was
<linux/random.h>.
Adjust meson build and code to accomodate both.
Fixes: a8984a81c "xwayland: Generate a Xauth file and pass this to
Xwayland when starting it"
https://gitlab.gnome.org/GNOME/mutter/merge_requests/633
Add the ability to add tracing instrumentation to the code. When
enabled, trace entries will generate a file with timing information
that will be processable by sysprof for generating visualization of
traces over time.
While enabled by default at compile time, it is possible to disable the
expansion of the macros completely by passing --disable-tracing to
./configure.
Tracing is so far only actually done if actually enabled on explicitly
specified threads.
This will be used by Mutter passing the write end of a pipe, where the
read end is sent to Sysprof itself via the D-Bus method 'Capture()'.
By passing that, we have to detect EPIPE that is sent when Sysprof stops
recording. Fortunately, we already ignore the signal at meta_init(), so
no need to add a custom signal handler.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/197
This commit adds meson build support to mutter. It takes a step away
from the three separate code bases with three different autotools setups
into a single meson build system. There are still places that can be
unified better, for example by removing various "config.h" style files
from cogl and clutter, centralizing debug C flags and other configurable
macros, and similar artifacts that are there only because they were once
separate code bases.
There are some differences between the autotools setup and the new
meson. Here are a few:
The meson setup doesn't generate wrapper scripts for various cogl and
clutter test cases. What these tests did was more or less generate a
tiny script that called an executable with a test name as the argument.
To run particular tests, just run the test executable with the name of
the test as the argument.
The meson setup doesn't install test files anymore. The autotools test
suite was designed towards working with installed tests, but it didn't
really still, and now with meson, it doesn't install anything at all,
but instead makes sure that everything runs with the uninstalled input
files, binaries and libraries when running the test suite. Installable
tests may come later.
Tests from cogl, clutter and mutter are run on 'meson test'. In
autotools, only cogl and clutter tests were run on 'make check'.