We might get told to restore the old monitor configuration by the
monitor configuration prompt, in case the user pressed "revert" or
equivalent. This might be in response to a button press, and those
happen during frame clock dispatch. If we would restore an old
configuration during dispatch, it means we would reconfigure the
monitors including their stage views while dispatching, which means we'd
destroy the frame clock while it's dispatching.
Doing that causes problems, as the frame clock isn't expecting to be
destroyed mid-function. Specifically,
We'd enter
clutter_frame_clock_dispatch (clutter-frame-clock.c:811)
frame_clock_source_dispatch (clutter-frame-clock.c:839)
g_main_dispatch (gmain.c:3454)
g_main_context_dispatch (gmain.c:4172)
g_main_context_iterate.constprop.0 (gmain.c:4248)
g_main_loop_run (gmain.c:4448)
meta_context_run_main_loop (meta-context.c:482)
main (main.c:663)
which would first call
_clutter_process_event (clutter-main.c:920)
_clutter_stage_process_queued_events (clutter-stage.c:757)
handle_frame_clock_before_frame (clutter-stage-view.c:1150)
which would emit e.g. a button event all the way to a button press
handler, which would e.g. deny the new configuration:
restore_previous_config (meta-monitor-manager.c:1931)
confirm_configuration (meta-monitor-manager.c:2866)
meta_monitor_manager_confirm_configuration (meta-monitor-manager.c:2880)
meta_plugin_complete_display_change (meta-plugin.c:172)
That would then regenerate the monitor configuration and stage view
layout, which would destroy the old stage view and frame clock.
meta_stage_native_rebuild_views (meta-stage-native.c:68)
meta_backend_native_update_screen_size (meta-backend-native.c:457)
meta_backend_sync_screen_size (meta-backend.c:266)
meta_backend_monitors_changed (meta-backend.c:337)
meta_monitor_manager_notify_monitors_changed (meta-monitor-manager.c:3595)
meta_monitor_manager_rebuild (meta-monitor-manager.c:3683)
meta_monitor_manager_native_apply_monitors_config (meta-monitor-manager-native.c:343)
meta_monitor_manager_apply_monitors_config (meta-monitor-manager.c:704)
After returning back to the original clutter_frame_clock_dispatch()
frame, various state in the frame clock will be gone and we'd crash.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2901>
Commit 7e9d9c7eb9 added new API to replace GTK for accelerator
parsing.
Unfortunately there is another case in gnome-shell, where we have
to get the label from the logical binding name rather than the
modifier+keysym combination.
Add another small method to cover that use case.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2899>
Normally, mutter implicitly allows a window being shown to take
focus. This is normally desired, except it steals input from
GNOME Shell self. Avoid focusing the just shown window in those
situations.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2878>
When a X11 application is started, typically what happens is:
- A startup notification token is created, with a _TIME%d suffix
- The application being spawned receives it through the environment
- (dbus piping, maybe)
- The application replies the startup notification token, and
fetches the timestamp from it
- The application makes a _NET_ACTIVE_WINDOW client message request
with this timestamp
- Mutter handles this client request and activates/focuses the window
Prevent this last step if windows are not interactable (e.g. there is
a compositor grab) and ignore the focus request. This specifically
applies to X11 clients requesting focus themselves, and unlike previous
approaches, doesn't try to prevent focus changes that do come through
interaction with Mutter/GNOME Shell.
This should only break if applications do not observe _NET_ACTIVE_WINDOW
and perform XSetInputFocus on themselves, but in that case the X11
keyboard focus is stolen from our hands already.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2878>
This is the mask that lets us receive among other events the rather
important CreateNotify, that tells us about new winows. This has went by
rather unnoticed except for cases where multiple windows show up very
quickly directly after the frames client spawned, because the drag icon
surface cache eventually already did select that particular mask.
Make things more reliably by explicitly setting the mask for the events
we rely on to function.
This fixes flaky stacking tests that map multiple X11 windows in a row.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2894>
2d8fa26c8e ("core: Pass "frame action" grab operations as an
"unconstrained" grab op") changed the behaviour to treat non-grab
related window moving that has the "user action" flag set to still apply
the "constrain_titlebar_visible" constraint.
The fact that it wasn't applied before was relied upon by some
extensions. While it should arguably exist a better API that for such
extensions to use that have a bit more predictable behavior, until that
is so, restore the old semantics.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2891>
Linear sampling can influence the value of surrounding pixels beyond
the scaled framebuffer extents calculated during stage view rendering,
resulting in flickering graphical artifacts due to unaccounted pixel
changes. This is exhibited in xfreerdp and wlfreerdp at 150% display
scaling.
Fix this by ensuring that all pixels that may be affected by linear
scaling is included in the framebuffer redraw clip by padding the actor
redraw clip.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2771>
We have the drm/InfoFrame encoding and our MetaOutputHdrMetadata
encoding. Check that we can correctly convert between each other by
doing a encode/decode and decode/encode roundtrip and then checking for
equality.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2879>
The existence of the KMS property just means that we can send an
InfoFrame but we also have to make sure the sink actually supports the
metadata type 1 and the selected transfer function.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2879>
Allows to prepare KMS updates to set the color space and HDR Static
Metadata on the output.
For some reason we need ALLOW_MODESET on commits which change the HDR
Static Metadata InfoFrame on AMDGPU. There is no technical reason why
one needs to mode set to send an InfoFrame and the driver should just
manage without ALLOW_MODESET. Until this is resolved in the kernel we
just prepare KMS updates which might mode set.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2879>
The HDR Static Metadata InfoFrame contents are described in CTA-861.3
and the kernel maintains a representation of that in `struct
hdr_metadata_infoframe` in `include/uapi/drm/drm_mode.h`.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2879>
The Colorspace property informs the display about the colorimetry of the
content. Only variants supported by the sink are exposed in the
property. The strings representing the color spaces are undocumented but
can be found in the `hdmi_colorspaces` list in
`drivers/gpu/drm/drm_connector.c` in the Linux kernel (v 6.2).
The HDR_OUTPUT_METADATA property is a blob with the InfoFrame content.
We have to query support for the different values in the struct from the
EDID/DisplayID ourselfs.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2879>
This adds a new 'experimental-hdr' string property to the MonitorManager
which can be changed from looking glass.
Currently when the string equals 'on', HDR (PQ, Rec2020) will be enabled
on all monitors which support it. In the future support for more
transfer functions and color spaces as well as HDR metadata can be
added.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2879>
The color space and HDR metadata are eventually sent as metadata to the
display. The color space informs the display of the colorimetry of the
frames we produce, the HDR metadata informs the display of the transfer
function and additional mastering display colorimetry and luminance to
guide tone and gamut mapping.
The only color spaces we support right now are the default color space
and Rec bt.2020 which is typically used for HDR content. Other supported
color spaces can be added when needed.
The default color space corresponds to whatever colorimetry the display
has when no further changes are made to the calibration of the display.
The colorimetry is communicated to sources via EDID/DisplayID.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2879>
A Wayland client repeatedly requesting activation of its surface using
the xdg-activation protocol would make mutter constantly update the
cursor.
To avoid needlessly updating the cursor back and forth between busy and
default, add a timeout to delay the update.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2849>
When a client (either Wayland or X11) is started, the window activation
will update the cursor to the "busy" cursor.
Mutter will then set the X11 cursor on the X11 root window to match that
so that X11 applications which do not explicitly set a cursor inherit
from that default (busy) cursor.
Updating the X11 cursor too often can hammer the X11 connection and
cause a deadlock with Xwayland.
Reload the X11 cursor in a later handler to avoid that issue.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2849>
We relied on them being valid longer to keep track of used GPUs. If we
don't have the CRTC (or output) we don't have a way to fetch the pointer
to the MetaGpu that drives the associated monitor.
This avoids a crash when trying to fetch said pointer from what would be
the NULL MetaCrtc pointer.
Fixes: 08593ea872 ("onscreen/native: Hold ref to the output and CRTC until detached")
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2667
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2887>
Ensure we preserve the fast zero-copy paths in Xwayland fullscreen
windows, instead of maybe rendering the client surface on top of the
frame surface, and providing the latter to the compositor.
To achieve this, additionally synchronize frame state when
recalculating features (e.g. after fullscreen/unfullscreen), and
account for this new condition when creating or destroying frames.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2797>
We were relying on gdk_cairo_region() to convert a cairo_region_t
into a path ready to fill/stroke in a cairo_t. This is a small
and detached helper that we can do ourselves, so put it together
with all other region helper functions.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2864>
Do the few remaining things that GDK is doing for us:
- Open and close the X11 Display
- Set up a GSource on the Display FD to handle events
- Allocate and free the content of XGenericEventCookie,
to "unroll" the few XInput2 events that Mutter still
does handle.
And remove the GdkDisplay we've so long relied on.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2864>
From reading the comment in the top of the file, not for the first
time. Keep our own error handler and maintain our own list of
failable x11 sequences in MetaX11Display, so we can move away from
GTK's.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2864>
These are done on the backend X11 connection, so it is unclear
what is the interplay through the borrowed global XSetErrorHandler()
that triggers issues for us here.
Anyways, better to be explicit, and use error traps the MetaBackendX11
style, in coherence with the rest of the things happening in that
display.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2864>