When selecting the default focus window, is_focusable() was not
considering the new conditions for whether a window should be shown or
hidden that were added to meta_window_should_be_showing() in 39942974.
As a result the default focus window could end up a window already
hidden or hidden once meta_window_flush_calc_showing() is called by
meta_window_focus() when focusing the default window. This would cause
meta_window_focus() to fail, which is an issue if it prevents us from
unfocusing a window when it is getting unmanaged.
Fixes: 399429742 ("x11: Integrate frames client into Mutter")
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2644
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2962>
Since MetaWindowDrag took a lot of this code to handle window drags
internally with less interactions with the rest of the stack, this
code in display/window/keybindings is unused.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
Replace the in-process implementation of frames with the external
frames client.
When a client window is created and managed by Mutter, Mutter will
determine whether it is a window that requires decorations and
hint the creation of a frame for it by setting the _MUTTER_NEEDS_FRAME
property on the client window.
After the frames client created a window that has the _MUTTER_FRAME_FOR
property, Mutter will proceed to reparent the client window on the
frame window, and show them as a single unit.
Rendering and event handling on the frame window will be performed by
the external client, Mutter is still responsible for everything else,
namely resizing client and frame window in synchronization, and
managing updates on the MetaWindowActor.
In order to let the frame be managed by the external client, Mutter
needs to change the way some properties are forwarded to the client
and/or frame windows. Some properties are necessary to keep propagating
to the client window only, some others need to happen on the frame
window now, and some others needs to be propagated on both so they
are synchronized about the behavior.
Also, some events that were previously totally unexpected in frame
windows are now susceptible to happen, so must be allowed now.
MetaFrame in src/core/frame.c now acts as the wrapper of foreign
windows created by the frames client, from the Mutter side. Location,
size, and lifetime are still largely in control of Mutter, some
details like visible/invisible borders are obtained from the client
instead (through the _MUTTER_FRAME_EXTENTS and _GTK_FRAME_EXTENTS
properties, respectively).
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2175>
Put the helper to use, in order to lift MetaWindow itself from this
accounting. As a bonus, the data itself now moved to the MetaWindowX11
private struct, since this may only happen with X11 windows (or its
Xwayland subclass).
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2175>
We can land inside meta_window_focus() in the middle of changing the
window workspace, because some signal handler of MetaWorkspace's
"window-removed" signal triggers a focus. This can cause a crash in
`g_assert (link)` when updating the MRU list because we still think
we're on the old workspace when actually we are already removed from
this workspaces MRU list.
To avoid crashes like this, bail out of meta_window_focus() when we're
in the middle of a workspace change.
Fixes https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/5368
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2691>
It's a bad idea to have data like this in the middle of a struct, as it
will easily cause everything behind it to be badly aligned and thus
increase memory access times.
So move all those bitfield booleans to the end of the struct.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2691>
With high frequency mouse devices, we would send very many configure
events per each update cycle, which had the end result that some clients
constantly re-allocating and redrawing their buffers far too often, if
they did this in direct response to xdg_toplevel configure events.
Lets throttle the interactive resize updates to stage updates, to avoid
having these clients doing the excessive buffer reallocation.
This also removes some old legacy X11 client resize throttling, that
throttled a bit arbitrarily on 25 resizes a second; it is probably
enough to throttle on stage updates for these clients.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2652>
There were some magic conditions that decided when
meta_window_constrain() was to be called or not. Reasoning about and
changing these conditions were complicated, and in practice the caller
knows when constraining should be done. Lets change things by adding a
'constrain' flag to the move-resize flags that makes this clearer. This
way we can, if needed, have better control of when a window is
constrained or not without leaking that logic into the generic
to-constrain-or-not expression.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2338>
The function finds a suitable logical monitor given the window
rectangle; this wasn't all that clear from the name
"calculate_main_logical_monitor".
This is in preparation for finding a new logical monitor using things
other than the geometry of the window.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2554>
This will later be used to tell Wayland clients about a size they
shouldn't exceed.
If the window doesn't have a main monitor, this function does nothing
and returns FALSE.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2167>
meta_window_(un)queue() was implemented with global arrays in window.c
that managed MetaLater handle IDs and lists of window queues. In order
to rely less on scattered static variables and making it clearer that
we're dealing with per display window management and not something
specific to a single window, move the window resize/calc-showing queue
management to MetaDisplay.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2264>
It's still used by e.g. GNOME Shell to produce fallback icons for X11
applications that doesn't come with a .desktop file. Geometry stays in
the generic class because it's used for minimize animations and is
configured by the panel (e.g. the one in gnome-shell-extensions).
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2264>
Change some things in these "app is alive" checks:
- The dialog timeout is separated from the ping timeout, in order
to show it again at a constant rate after dismissing, despite in
flight pings. It still shows immediately after the first failed
ping.
- As we want to tap further into is-alive logic, MetaWindow now
made it a property, that other places in code can fetch and
subscribe.
- Motion events trigger ping (as long as there was none other in
flight for the same window), and are counted between ping and
pong, in order to preemptively declare the window as not alive
before there is trouble with event queues being overflown.
This results in a separate logic between "the application does
not respond" and "we are showing the close dialog" so that the
former may get triggered independently.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2122>
meta_window_wayland_finish_move_resize() is called for both, finishing
a resize that has been requested through/by mutter and for resizes
directly done by the client. This introduces a CLIENT_RESIZE flag to
differentiate the former from the latter. Having this distinction is
required to know what the last requested size by either the client or
mutter is while ignoring older requests that might only have been
applied now.
This excludes client resizes when there are still pending
configurations, because the resize is known to be only temporary.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2066>
Currently the only way to get cgroup for a MetaWindow is to get it's
PID and perform a bunch of file accesses and string manipulations.
This is especially not feasible if we want to get the cgroup every
time a MetaWindow has gained or lost focus.
A solution to this is to cache the GFile for a cgroup path.
The creation and access of this GFile is handled by
`meta_window_get_unit_cgroup` function.
`meta_window_unit_cgroup_equal` is a utility function which allows
us to compare whether two MetaWindows belong to the same cgroup.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1960>
Makes workspace transitions in gnome-shell look more seamless, since
both outgoing and incoming workspace have focused windows.
This is only done for click focus mode, since it's not known which
window would be focused for the other modes.
Track the state and recompute it when it changes, to avoid redrawing
the windows needlessly.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/850>
X11 clients can use different models of input handling, of which some
may not result focus being set synchronously.
For such clients, meta_focus_window() will not change the focus itself
but rely on the client itself to set the input focus on the desired
window.
Add a new MetaWindow API to check when dealing with such a window.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1716>
We will use a dedicated variable when transitioning to/from fullscreen state
and leave the previously used 'saved_rect' exclusively for transitioning
between floating and maximized state.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/801
Aligning windows manually with other windows has become less important
since the advent of tiling. This decreases the usefulness of edge
resistance, which in fact many users perceive as lag nowadays.
Account for that by limiting resistance to screen and monitor edges by
default, and only include windows when the control key is pressed.
https://bugzilla.gnome.org/show_bug.cgi?id=679609
Allowing code from inside mutter to create a child process and
delegate on it some of its tasks is something very useful. This can
be done easily with the g_subprocess and g_subprocess_launcher classes
already available in GLib and GObject.
Unfortunately, although the child process can be a graphical program,
currently it is not possible for the inner code to identify the
windows created by the child in a secure manner (this is: being able
to ensure that a malicious program won't be able to trick the inner
code into thinking it is a child process launched by it).
Under X11 this is not a problem because any program has full control
over their windows, but under Wayland it is a different story: a
program can't neither force their window to be kept at the top (like a
docker program does) or at the bottom (like a program for desktop icons
does), nor hide it from the list of windows. This means that it is not
possible for a "classic", non-priviledged program, to fulfill these
tasks, and it can be done only from code inside mutter (like a
gnome-shell extension).
This is a non desirable situation, because an extension runs in the
same main loop than the whole desktop itself, which means that a
complex extension can need to do too much work inside the main loop,
and freeze the whole desktop for too much time. Also, it is important
to note that javascript doesn't have access to fork(), or threads,
which means that, at most, all the parallel computing that can do is
those available in the _async calls in GLib/GObject.
Also, having to create an extension for any priviledged graphical
element is an stopper for a lot of programmers who already know
GTK+ but doesn't know Clutter.
This patch wants to offer a solution to this problem, by offering a
new class that allows to launch a trusted child process from inside
mutter, and make it to use an specific UNIX socket to communicate
with the compositor. It also allows to check whether an specific
MetaWindow was created by one of this trusted child processes or not.
This allows to create extensions that launch a child process, and
when that process creates a window, the extension can confirm in a
secure way that the window really belongs to that process
launched by it, so it can give to that window "superpowers" like
being kept at the bottom of the desktop, not being listed in the
list of windows or shown in the Activities panel... Also, in future
versions, it could easily implement protocol extensions that only
could be used by these trusted child processes.
Several examples of the usefulness of this are that, with it, it
is possible to write programs that implements:
- desktop icons
- a dock
- a top or bottom bar
...
all in a secure manner, avoiding insecure programs to do the same.
In fact, even if the same code is launched manually, it won't have
those privileges, only the specific process launched from inside
mutter.
Since this is only needed under Wayland, it won't work under X11.
Fixes https://gitlab.gnome.org/GNOME/mutter/issues/741
Since the PID of a window can't change as long as the window exists, we
can safely cache it after we got a valid PID once, so do that by adding
a new `window->client_pid` private property.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1180
The shell uses the PID of windows to map them to apps or to find out
which window/app triggered a dialog. It currently fails to do that in
some situations on Wayland, because meta_window_get_pid() only returns a
valid PID for x11 clients.
So use the client PID instead of the X11-exclusive _NET_WM_PID property
to find out the PID of the process that started the window. We can do
that by simply renaming the already existing
meta_window_get_client_pid() API to meta_window_get_pid() and moving
the old API providing the _NET_WM_PID to meta_window_get_netwm_pid().
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1180
The 'assert_size' command checks that the size of the window, both
client side and compositor side, corresponds to an expected size set by
the test case.
The size comparison can only be done when the window is using 'csd', in
order for both the client and server to have the same amount of
understanding of the title bar. For ssd, the client cannot know how
large the title bar, thus cannot verify the full window size.
Sizes can be specified to mean the size of the monitor divided by a
number. This is that one can make sure a window is maximized or
fullscreened correctly.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1171
Better to have the relevant object figure out whether it is a good
position to be unredirectable other than the actor, which should be
responsible for being composited.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/798
This commits adds support on the MetaWindow and constraints engine side
for asynchronously repositioning a window with a placement rule, either
due to environmental changes (e.g. parent moved) or explicitly done so
via `meta_window_update_placement_rule()`.
This is so far unused, as placement rules where this functionality is
triggered are not yet constructed by the xdg-shell implementation, and
no users of `meta_window_update_placement_rule()` exists yet.
To summarize, it works by making it possible to produce placement rules
with the parent rectangle a window should be placed against, while
creating a pending configuration that is not applied until acknowledged
by the client using the xdg-shell configure/ack_configure mechanisms.
An "temporary" constrain result is added to deal with situations
where the client window *must* move immediately even though it has not yet
acknowledged a new configuration that was sent. This happens for example
when the parent window is moved, causing the popup window to change its
relative position e.g. because it ended up partially off-screen. In this
situation, the temporary position corresponds to the result of the
movement of the parent, while the pending (asynchronously configured)
position is the relative one given the new constraining result.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/705
MetaGravity is an enum, where the values match the X11 macros used for
gravity, with the exception that `ForgetGravity` was renamed
`META_GRAVITY_NONE` to have less of a obscure name.
The motivation for this is to rely less on libX11 data types and macros
in generic code.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/705
A placement rule placed window positions itself relative to its parent,
thus converting between relative coordinates to absolute coordinates,
then back to relative coordinates implies unwanted restrictions for
example when the absolute coordinate should not be calculated againts
the current parent window position.
Deal with this by keeping track of the relative position all the way
from the constraining engine to the move-resize window implementation.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/705
To organize things a bit better, put the fields related to the placement
rule state in its own anonymous struct inside MetaWindow. While at it,
rename the somewhat oddly named variable that in practice means the
current relative window position.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/705
The intention of meta_window_wayland_move_resize() is to finish a
move-resize requested previously, e.g. by a state change, or a
interactive resize. Make the function name carry this intention, by
renaming it to meta_window_wayland_finish_move_resize().
https://gitlab.gnome.org/GNOME/mutter/merge_requests/907
While most of the code to compute a window's layer isn't explicitly
windowing backend specific, it is in practice: On wayland there are
no DESKTOP windows(*), docks(*) or groups.
Reflect that by introducing a calculate_layer() vfunc that computes
(and sets) a window's layer.
(*) they shall burn in hell, amen!
https://gitlab.gnome.org/GNOME/mutter/merge_requests/949
Most of the layer computation that the stack does actually depends
on the windowing backend, so we will move it to a vfunc.
However before we do that, split out the bit that will be shared.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/949
Add an adjust_fullscreen_monitor_rect virtual method to MetaWindowClass
and call this from setup_constraint_info() if the window is fullscreen.
This allows MetaWindowClass to adjust the monitor-rectangle used to size
the window when going fullscreen, which will be used in further commits
for a workaround related to fullscreen games under Xwayland.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/739