22 Commits

Author SHA1 Message Date
Robert Bragg
a0441778ad This re-licenses Cogl 1.18 under the MIT license
Since the Cogl 1.18 branch is actively maintained in parallel with the
master branch; this is a counter part to commit 1b83ef938fc16b which
re-licensed the master branch to use the MIT license.

This re-licensing is a follow up to the proposal that was sent to the
Cogl mailing list:
http://lists.freedesktop.org/archives/cogl/2013-December/001465.html

Note: there was a copyright assignment policy in place for Clutter (and
therefore Cogl which was part of Clutter at the time) until the 11th of
June 2010 and so we only checked the details after that point (commit
0bbf50f905)

For each file, authors were identified via this Git command:
$ git blame -p -C -C -C20 -M -M10  0bbf50f905..HEAD

We received blanket approvals for re-licensing all Red Hat and Collabora
contributions which reduced how many people needed to be contacted
individually:
- http://lists.freedesktop.org/archives/cogl/2013-December/001470.html
- http://lists.freedesktop.org/archives/cogl/2014-January/001536.html

Individual approval requests were sent to all the other identified authors
who all confirmed the re-license on the Cogl mailinglist:
http://lists.freedesktop.org/archives/cogl/2014-January

As well as updating the copyright header in all sources files, the
COPYING file has been updated to reflect the license change and also
document the other licenses used in Cogl such as the SGI Free Software
License B, version 2.0 and the 3-clause BSD license.

This patch was not simply cherry-picked from master; but the same
methodology was used to check the source files.
2014-02-22 02:02:53 +00:00
Robert Bragg
7365c3aa77 Separate out CoglPath api into sub-library
This splits out the cogl_path_ api into a separate cogl-path sub-library
like cogl-pango and cogl-gst. This enables developers to build Cogl with
this sub-library disabled if they don't need it which can be useful when
its important to keep the size of an application and its dependencies
down to a minimum. The functions cogl_framebuffer_{fill,stroke}_path
have been renamed to cogl_path_{fill,stroke}.

There were a few places in core cogl and cogl-gst that referenced the
CoglPath api and these have been decoupled by using the CoglPrimitive
api instead. In the case of cogl_framebuffer_push_path_clip() the core
clip stack no longer accepts path clips directly but it's now possible
to get a CoglPrimitive for the fill of a path and so the implementation
of cogl_framebuffer_push_path_clip() now lives in cogl-path and works as
a shim that first gets a CoglPrimitive and uses
cogl_framebuffer_push_primitive_clip instead.

We may want to consider renaming cogl_framebuffer_push_path_clip to
put it in the cogl_path_ namespace.

Reviewed-by: Neil Roberts <neil@linux.intel.com>

(cherry picked from commit 8aadfd829239534fb4ec8255cdea813d698c5a3f)

So as to avoid breaking the 1.x API or even the ABI since we are quite
late in the 1.16 development cycle the patch was modified to build
cogl-path as a noinst_LTLIBRARY before building cogl and link the code
directly into libcogl.so as it was previously. This way we can wait
until the start of the 1.18 cycle before splitting the code into a
separate libcogl-path.so.

This also adds shims for cogl_framebuffer_fill/stroke_path() to avoid
breaking the 1.x API/ABI.
2013-08-19 22:44:35 +01:00
Neil Roberts
3a041ef41b Reorder some struct members to avoid padding due to alignment
This tweaks the ordering of some struct members in some of the more
important structs so that the compiler won't insert wasted padding to
avoid breaking the alignment. Some members that were previously
unsigned long have been changed to unsigned int. These members need to
be able to fit in 32-bits to run on 32-bit machines anyway so there's
no point in having them extend to 64-bit on 64-bit machines. This
doesn't affect the public API.

Reviewed-by: Robert Bragg <robert@linux.intel.com>

(cherry picked from commit b721af236680005464e39f7f4dd11381d95efb16)
2013-01-22 17:48:19 +00:00
Robert Bragg
e3d6bc36d3 Re-design the matrix stack using a graph of ops
This re-designs the matrix stack so we now keep track of each separate
operation such as rotating, scaling, translating and multiplying as
immutable, ref-counted nodes in a graph.

Being a "graph" here means that different transformations composed of
a sequence of linked operation nodes may share nodes.

The first node in a matrix-stack is always a LOAD_IDENTITY operation.

As an example consider if an application where to draw three rectangles
A, B and C something like this:

cogl_framebuffer_scale (fb, 2, 2, 2);
cogl_framebuffer_push_matrix(fb);

  cogl_framebuffer_translate (fb, 10, 0, 0);

  cogl_framebuffer_push_matrix(fb);

    cogl_framebuffer_rotate (fb, 45, 0, 0, 1);
    cogl_framebuffer_draw_rectangle (...); /* A */

  cogl_framebuffer_pop_matrix(fb);

  cogl_framebuffer_draw_rectangle (...); /* B */

cogl_framebuffer_pop_matrix(fb);

cogl_framebuffer_push_matrix(fb);
  cogl_framebuffer_set_modelview_matrix (fb, &mv);
  cogl_framebuffer_draw_rectangle (...); /* C */
cogl_framebuffer_pop_matrix(fb);

That would result in a graph of nodes like this:

LOAD_IDENTITY
      |
    SCALE
    /     \
SAVE       LOAD
  |           |
TRANSLATE    RECTANGLE(C)
  |     \
SAVE    RECTANGLE(B)
  |
ROTATE
  |
RECTANGLE(A)

Each push adds a SAVE operation which serves as a marker to rewind too
when a corresponding pop is issued and also each SAVE node may also
store a cached matrix representing the composition of all its ancestor
nodes. This means if we repeatedly need to resolve a real CoglMatrix
for a given node then we don't need to repeat the composition.

Some advantages of this design are:
- A single pointer to any node in the graph can now represent a
  complete, immutable transformation that can be logged for example
  into a journal. Previously we were storing a full CoglMatrix in
  each journal entry which is 16 floats for the matrix itself as well
  as space for flags and another 16 floats for possibly storing a
  cache of the inverse. This means that we significantly reduce
  the size of the journal when drawing lots of primitives and we also
  avoid copying over 128 bytes per entry.
- It becomes much cheaper to check for equality. In cases where some
  (unlikely) false negatives are allowed simply comparing the pointers
  of two matrix stack graph entries is enough. Previously we would use
  memcmp() to compare matrices.
- It becomes easier to do comparisons of transformations. By looking
  for the common ancestry between nodes we can determine the operations
  that differentiate the transforms and use those to gain a high level
  understanding of the differences. For example we use this in the
  journal to be able to efficiently determine when two rectangle
  transforms only differ by some translation so that we can perform
  software clipping.

Reviewed-by: Neil Roberts <neil@linux.intel.com>

(cherry picked from commit f75aee93f6b293ca7a7babbd8fcc326ee6bf7aef)
2012-08-06 14:27:40 +01:00
Robert Bragg
54735dec84 Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.

Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.

Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.

So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.

Instead of gsize we now use size_t

For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.

Reviewed-by: Neil Roberts <neil@linux.intel.com>

(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-08-06 14:27:39 +01:00
Neil Roberts
3700cc26a5 Change API so that CoglPixelBuffer no longer knows its w/h/format
The idea is that CoglPixelBuffer should just be a buffer that can be
used for pixel data and it has no idea about the details of any images
that are stored in it. This is analogous to CoglAttributeBuffer which
itself does not have any information about the attributes. When you
want to use a pixel buffer you should create a CoglBitmap which points
to a region of the attribute buffer and provides the extra needed
information such as the width, height and format. That way it is also
possible to use a single CoglPixelBuffer with multiple bitmaps.

The changes that are made are:

• cogl_pixel_buffer_new_with_size has been removed and in its place is
  cogl_bitmap_new_with_size. This will create a pixel buffer at the
  right size and rowstride for the given width/height/format and
  immediately create a single CoglBitmap to point into it. The old
  function had an out-parameter for the stride of the image but with
  the new API this should be queriable from the bitmap (although there
  is no function for this yet).

• There is now a public cogl_pixel_buffer_new constructor. This takes
  a size in bytes and data pointer similarly to
  cogl_attribute_buffer_new.

• cogl_texture_new_from_buffer has been removed. If you want to create
  a texture from a pixel buffer you should wrap it up in a bitmap
  first. There is already API to create a texture from a bitmap.

This patch also does a bit of header juggling because cogl-context.h
was including cogl-texture.h and cogl-framebuffer.h which were causing
some circular dependencies when cogl-bitmap.h includes cogl-context.h.
These weren't actually needed in cogl-context.h itself but a few other
headers were relying on them being included so this adds the #includes
where necessary.

Reviewed-by: Robert Bragg <robert@linux.intel.com>
2012-03-05 18:47:45 +00:00
Robert Bragg
680f63a48c Remove all internal includes of cogl.h
The cogl.h header is meant to be the public header for including the 1.x
api used by Clutter so we should stop using that as a convenient way to
include all likely prototypes and typedefs. Actually we already do a
good job of listing the specific headers we depend on in each of the .c
files we have so mostly this patch just strip out the redundant
includes for cogl.h with a few fixups where that broke the build.

Reviewed-by: Neil Roberts <neil@linux.intel.com>
2012-02-20 23:12:45 +00:00
Robert Bragg
6d1bf9a0d4 remove redundant _cogl_clip_stack_dirty() api
The only place we were calling _cogl_clip_stack_dirty() was when
changing the current draw_buffer which also implies a change in
the current clip stack. _cogl_clip_stack_flush() would already
be able to quickly determine that the clip stack has changed by
checking ctx->current_clip_stack so there isn't really any need
to explicitly mark the clip_stack state as dirty.

Reviewed-by: Neil Roberts <neil@linux.intel.com>
2011-12-06 18:51:57 +00:00
Robert Bragg
f6daed62e3 clip: Adds cogl_clip_push_primitive API
This adds a new experimental function, cogl_clip_push_primitive, that
allows you to push a CoglPrimitive onto the clip stack. The primitive
should describe a flat 2D shape and the geometry shouldn't include any
self intersections. When pushing a primitive you also need to tell
Cogl what the bounding box of that shape is (in shape local coordinates)
so that Cogl is able to efficiently update the required region of the
stencil buffer.

Reviewed-by: Neil Roberts <neil@linux.intel.com>
2011-11-01 12:02:59 +00:00
Robert Bragg
f7b1bab1ad framebuffer: don't reference default fb in _clear apis
Some of the functions we were calling in cogl_framebuffer_clear[4f] were
referring to the current framebuffer, which would result in a crash
if nothing had been pushed before trying to explicitly clear a given
framebuffer.

Reviewed-by: Neil Roberts <neil@linux.intel.com>
2011-08-12 15:28:43 +01:00
Robert Bragg
cf92670fbb clip-stack: Adds _cogl_clip_stack_get_bounds API
This adds an internal function to be able to query the screen space
bounding box of the current clip entries contained in a given
CoglClipStack.

This bounding box which is cheap to determine can be useful to know the
largest extents that might be updated while drawing with this clip
stack.

For example the plan is to use this as part of an optimized read-pixel
path handled on the CPU which will need to track the currently valid
extents of the last call to cogl_clear()
2011-01-21 16:18:10 +00:00
Neil Roberts
7294e5552c cogl-clip-stack: Move the struct definitions to the header
It will be useful to be able to directly examine the contents of the
clip stack within the journal code.
2010-12-03 17:16:58 +00:00
Neil Roberts
0c8eb904c0 cogl: Move the clip stack dirtiness to the context rather than the FB
Previously we tracked whether the clip stack needs flushing as part of
the CoglClipState which is part of the CoglFramebuffer state. This is
a bit odd because most of the clipping state (such as the clip planes
and the scissor) are part of the GL context's state rather than the
framebuffer. We were marking the clip state on the framebuffer dirty
every time we change the framebuffer anyway so it seems to make more
sense to have the dirtiness be part of the global context.

Instead of a just a single boolean to record whether the state needs
flushing, the CoglContext now holds a reference to the clip stack that
was flushed. That way we can flush arbitrary stack states and if it
happens to be the same as the state already flushed then Cogl will do
nothing. This will be useful if we log the clip stack in the journal
because then we will need to flush unrelated clip stack states for
each batch.
2010-11-04 18:08:27 +00:00
Neil Roberts
f15b47cc03 cogl-clip-stack: Don't allocate a separate struct for CoglClipStack
Instead of having a separate CoglHandle for CoglClipStack the code is
now expected to directly hold a pointer to the top entry on the
stack. The empty stack is then the NULL pointer. This saves an
allocation when we want to copy the stack because we can just take a
reference on a stack entry. The idea is that this will make it
possible to store the clip stack in the journal without any extra
allocations.

The _cogl_get_clip_stack and set functions now take a CoglClipStack
pointer instead of a handle so it would no longer make sense to make
them public. However I think the only reason we would have wanted that
in the first place would be to save the clip state between switching
FBOs and that is no longer necessary.
2010-11-04 18:08:27 +00:00
Robert Bragg
595271ac87 clip_stack: Remove use of CoglHandle in the CoglClipStack API
This replaces the use of CoglHandle with strongly type CoglClipStack *
pointers instead. The only function not converted for now is
cogl_is_clip_stack which will be done in a later commit.
2010-06-01 12:20:59 +01:00
Neil Roberts
30c4678ff4 cogl: Implement retained clip stacks
This adds three new internal API functions which can be used to retain
the clip stack state and restore it later:

 _cogl_get_clip_stack
 _cogl_set_clip_stack
 _cogl_clip_stack_copy

The functions are currently internal and not yet used but we may want
to make them public in future to replace the cogl_clip_stack_save()
and cogl_clip_stack_restore() APIs.

The get function just returns the handle to the clip stack at the top
of the stack of stacks and the set function just replaces it.

The copy function makes a cheap copy of an existing stack by taking a
reference to the top stack entry. This ends up working like a deep
copy because there is no way to modify entries of a stack but it
doesn't actually copy the data.
2010-04-15 14:51:01 +01:00
Neil Roberts
84b87e811e cogl-clip-stack: Convert to be a CoglHandle
CoglClipStacks can now be reference counted via a CoglHandle. The
ClipClipState now stores handles in the list rather than CoglClipStack
pointers.
2010-04-15 14:51:01 +01:00
Neil Roberts
f6f375cb36 Separate out CoglClipStackState from cogl-clip-stack.c
CoglClipStackState has now been renamed to CoglClipState and is moved
to a separate file. CoglClipStack now just maintains a stack and
doesn't worry about the rest of the state. CoglClipStack sill contains
the code to flush the stack to GL.
2010-04-15 14:51:00 +01:00
Emmanuele Bassi
72f4ddf532 Remove mentions of the FSF address
Since using addresses that might change is something that finally
the FSF acknowledge as a plausible scenario (after changing address
twice), the license blurb in the source files should use the URI
for getting the license in case the library did not come with it.

Not that URIs cannot possibly change, but at least it's easier to
set up a redirection at the same place.

As a side note: this commit closes the oldes bug in Clutter's bug
report tool.

http://bugzilla.openedhand.com/show_bug.cgi?id=521
2010-03-01 12:56:10 +00:00
Robert Bragg
0f5f4e8645 cogl: improves header and coding style consistency
We've had complaints that our Cogl code/headers are a bit "special" so
this is a first pass at tidying things up by giving them some
consistency. These changes are all consistent with how new code in Cogl
is being written, but the style isn't consistently applied across all
code yet.

There are two parts to this patch; but since each one required a large
amount of effort to maintain tidy indenting it made sense to combine the
changes to reduce the time spent re indenting the same lines.

The first change is to use a consistent style for declaring function
prototypes in headers. Cogl headers now consistently use this style for
prototypes:

 return_type
 cogl_function_name (CoglType arg0,
                     CoglType arg1);

Not everyone likes this style, but it seems that most of the currently
active Cogl developers agree on it.

The second change is to constrain the use of redundant glib data types
in Cogl. Uses of gint, guint, gfloat, glong, gulong and gchar have all
been replaced with int, unsigned int, float, long, unsigned long and char
respectively. When talking about pixel data; use of guchar has been
replaced with guint8, otherwise unsigned char can be used.

The glib types that we continue to use for portability are gboolean,
gint{8,16,32,64}, guint{8,16,32,64} and gsize.

The general intention is that Cogl should look palatable to the widest
range of C programmers including those outside the Gnome community so
- especially for the public API - we want to minimize the number of
foreign looking typedefs.
2010-02-12 14:05:00 +00:00
Robert Bragg
bb3a008318 [draw-buffers] First pass at overhauling Cogl's framebuffer management
Cogl's support for offscreen rendering was originally written just to support
the clutter_texture_new_from_actor API and due to lack of documentation and
several confusing - non orthogonal - side effects of using the API it wasn't
really possible to use directly.

This commit does a number of things:
- It removes {gl,gles}/cogl-fbo.{c,h} and adds shared cogl-draw-buffer.{c,h}
  files instead which should be easier to maintain.
- internally CoglFbo objects are now called CoglDrawBuffers. A
  CoglDrawBuffer is an abstract base class that is inherited from to
  implement CoglOnscreen and CoglOffscreen draw buffers.  CoglOffscreen draw
  buffers will initially be used to support the
  cogl_offscreen_new_to_texture API, and CoglOnscreen draw buffers will
  start to be used internally to represent windows as we aim to migrate some
  of Clutter's backend code to Cogl.
- It makes draw buffer objects the owners of the following state:
  - viewport
  - projection matrix stack
  - modelview matrix stack
  - clip state
(This means when you switch between draw buffers you will automatically be
 switching to their associated viewport, matrix and clip state)

Aside from hopefully making cogl_offscreen_new_to_texture be more useful
short term by having simpler and well defined semantics for
cogl_set_draw_buffer, as mentioned above this is the first step for a couple
of other things:
- Its a step toward moving ownership for windows down from Clutter backends
  into Cogl, by (internally at least) introducing the CoglOnscreen draw
  buffer.  Note: the plan is that cogl_set_draw_buffer will accept on or
  offscreen draw buffer handles, and the "target" argument will become
  redundant since we will instead query the type of the given draw buffer
  handle.
- Because we have a common type for on and offscreen framebuffers we can
  provide a unified API for framebuffer management. Things like:
  - blitting between buffers
  - managing ancillary buffers (e.g. attaching depth and stencil buffers)
  - size requisition
  - clearing
2009-11-03 17:23:03 +00:00
Robert Bragg
0bce7eac53 Intial Re-layout of the Cogl source code and introduction of a Cogl Winsys
As part of an incremental process to have Cogl be a standalone project we
want to re-consider how we organise the Cogl source code.

Currently this is the structure I'm aiming for:
cogl/
    cogl/
	<put common source here>
	winsys/
	   cogl-glx.c
	   cogl-wgl.c
	driver/
	    gl/
	    gles/
	os/ ?
    utils/
	cogl-fixed
	cogl-matrix-stack?
        cogl-journal?
        cogl-primitives?
    pango/

The new winsys component is a starting point for migrating window system
code (i.e.  x11,glx,wgl,osx,egl etc) from Clutter to Cogl.

The utils/ and pango/ directories aren't added by this commit, but they are
noted because I plan to add them soon.

Overview of the planned structure:

* The winsys/ API is the API that binds OpenGL to a specific window system,
  be that X11 or win32 etc.  Example are glx, wgl and egl. Much of the logic
  under clutter/{glx,osx,win32 etc} should migrate here.

* Note there is also the idea of a winsys-base that may represent a window
  system for which there are multiple winsys APIs.  An example of this is
  x11, since glx and egl may both be used with x11.  (currently only Clutter
  has the idea of a winsys-base)

* The driver/ represents a specific varient of OpenGL. Currently we have "gl"
  representing OpenGL 1.4-2.1 (mostly fixed function) and "gles" representing
  GLES 1.1 (fixed funciton) and 2.0 (fully shader based)

* Everything under cogl/ should fundamentally be supporting access to the
  GPU.  Essentially Cogl's most basic requirement is to provide a nice GPU
  Graphics API and drawing a line between this and the utility functionality
  we add to support Clutter should help keep this lean and maintainable.

* Code under utils/ as suggested builds on cogl/ adding more convenient
  APIs or mechanism to optimize special cases. Broadly speaking you can
  compare cogl/ to OpenGL and utils/ to GLU.

* clutter/pango will be moved to clutter/cogl/pango

How some of the internal configure.ac/pkg-config terminology has changed:
backendextra -> CLUTTER_WINSYS_BASE # e.g. "x11"
backendextralib -> CLUTTER_WINSYS_BASE_LIB # e.g. "x11/libclutter-x11.la"
clutterbackend -> {CLUTTER,COGL}_WINSYS # e.g. "glx"
CLUTTER_FLAVOUR -> {CLUTTER,COGL}_WINSYS
clutterbackendlib -> CLUTTER_WINSYS_LIB
CLUTTER_COGL -> COGL_DRIVER # e.g. "gl"

Note: The CLUTTER_FLAVOUR and CLUTTER_COGL defines are kept for apps

As the first thing to take advantage of the new winsys component in Cogl;
cogl_get_proc_address() has been moved from cogl/{gl,gles}/cogl.c into
cogl/common/cogl.c and this common implementation first trys
_cogl_winsys_get_proc_address() but if that fails then it falls back to
gmodule.
2009-10-16 18:58:50 +01:00