They weren't running, and didn't pass. Update the values to match what
is the current result.
Fixes: a6217c720e4f ("tests: Add tests for monitor_calculate_mode_scale")
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2880>
To have the test case say e.g. 1.75 while the effective scale is
1.74863386, use an epsilon of 0.2.
Fixes: a6217c720e4f ("tests: Add tests for monitor_calculate_mode_scale")
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2880>
The "later" API is used to queue actions in relation to compositing,
thus is owned by the MetaCompositor instance. Make users of this
functionality get MetaLaters instance from the compositor, and stop
using the global meta_later() API.
display: Use non-singleton MetaLater API
tests: Use non-singleton MetaLater API
meta/common: Make docs refer to context aware MetaLater API
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2718>
This means we can eliminate the use of scattered singletons that isn't
added by the tests or the test framework itself.
tests: Don't get backend from old singleton getter
Either use the ownership chain, or the explicit test context instance
pointer.
tests/wayland: Pass context to test client constructor
So that we can get the Wayland compositor directly from the context.
tests: Don't get display from singleton
tests/client: Make test client carry a context pointer
tests/runner: Have test cases carry a context pointer
tests/wayland/test-driver: Get backend from context
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2718>
We put a DEVICE_ADDED or DEVICE_REMOVED event into Clutters event queue
here, so we should also wait for Clutter to process events once.
Just putting an event into the queue doesn't mean it gets processed
immediately (especially when the commit after this one is applied), so
wait for a stage update here.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2697>
Instead of having users of the test client manually deal with alarm
filters, let the test client automatically add itself as filters. This
changes the MetaX11Display a bit, to handle an array of filters instead
of a single filter.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2704>
This is an old relic from when ClutterStageView was being added, and
tests were somewhat prepared to be able to test the "X11 style" of
things, with the nested backend some how managing to emulate that.
Lets drop that stuff, it isn't used by the test suite, and isn't useful
anyway; if we want to test X11 configurations, we should use the actual
X11 backend, which didn't make use of this anyway.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2619>
We fairly consistently had multiple monitors with the whole
vendor,product,serial tuple identical. If we start relying on making
monitors a bit more unique, e.g. for colord integration, we need to make
two monitors connected distinguishable in order for tests to properly
reflect reality and excercise the correct colord integration paths.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2141>
It already was built into it without any symbols exported, but also
duplicated in test cases that used it. Make it so that the built in
functions are exported, with prefixes, and make all tests use the
exported functions. While at it, make things go via MetaContext or
MetaBackend depending on how early in initialization things are run.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2262>
The test aims to verify that setting the following policy
<policy>
<stores>
<store>system</store>
</stores>
</policy>
only applies monitor configurations from the system level.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2030>
This adds a way to define a way, at the system level, to define a policy
of how monitor configuration files are loaded.
The intended use case is to e.g. either prefer system level monitor
configurations before user levels, or only allow system level
configurations.
Examples:
Prefer system over user level configurations:
<monitors version="2">
<policy>
<stores>
<store>system</store>
<store>user</store>
</stores>
</policy>
<configuration>
...
</configuration>
</monitors>
Only allow system level configurations:
<monitors version="2">
<policy>
<stores>
<store>system</store>
</stores>
</policy>
<configuration>
...
</configuration>
</monitors>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2030>
When checking panel orientation on logical monitors we should take
panel orientation transform to check it's properly applied, so ensure
that we're checking the right one.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2090>
The monitor orientation tests do a lot of things in sequence. Replace
some of the comments with g_test_message() so that the log from a failed
test gives us a better idea of how far we got.
Signed-off-by: Simon McVittie <smcv@debian.org>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2049>
Previously, we were waiting up to 300ms for the signal, then proceeding
anyway. However, 300ms is not necessarily long enough to wait on an
autobuilder that might be heavily loaded, particularly if it's a non-x86
with different performance characteristics.
Conversely, if mutter responds to the D-Bus signal from the mock sensor
before we have connected to the signal, then we cannot expect to receive
the signal - it was already emitted, but we missed it. In this case, we
need to avoid waiting.
One remaining use of wait_for_orientation_changes() that would previously
always have timed out was in
meta_test_orientation_manager_has_accelerometer(), which does not
actually expect to see an orientation-changed signal. Make this wait
for the accelerometer to be detected instead.
Resolves: https://gitlab.gnome.org/GNOME/mutter/-/issues/1967
Bug-Debian: https://bugs.debian.org/995929
Signed-off-by: Simon McVittie <smcv@debian.org>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2049>
In X11 when we switch to another tty all the the signals are blocked (as
the display fd is not replying back to polling, causing the main loop to
stop), and they are all handled once we switch back to the tty.
This is not a problem for most of external events, but in case of
accelerometer changes, once we reactivate a mutter session we'll get
them all together, causing lots of monitor reconfigurations leading to
black screen for some seconds and most of the times to a wrong
configuration being applied.
To avoid this, batch all these events using an idle to only apply the
last one we got in a loop.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1217
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1233>
When we get an orientation event we don't care about keeping track of the
configuration changes, but actually we can consider the new configuration
just a variant of the previous one, adapted to floating device hardware
events, so we only want to apply it if possible, but we don't want to keep
a record of it for reverting capabilities.
Doing that would in fact, break the ability of reverting back to an actual
temporary or persistent configuration.
For example when device orientation events happen while we're waiting for
an user resolution change confirmation, we would save our new rotated
configuration in the history, making then impossible to revert back to
the original persistent one.
So in such case, don't keep track of those configurations in the history,
but only keep track of the last one as current, checking whether the
new current is child or sibling of the previously one.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1221
Related to: https://gitlab.gnome.org/GNOME/mutter/-/issues/646
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1233>
Monitor configuration check tests can be very complex and in case of
failures we can't easily catch where a failure happened without entering
in debug mode, something that isn't always an option in CI or external
builders.
So add more debug statements in configuration check functions and use
macros to ensure that we print the caller function and location on more
complex check functions.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/522>
Verify that the suggested monitor configuration contains only adjacent monitors,
and that if this is not the case we fallback to the linear configuration.
This can happen in case of multi-DPI setup, so add a test checking this too.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/522>
With some resolutions (such as 4096x2160) we may compute duplicated
scale factors because we used a too wide threshold to check for an
applicable value.
In fact, while when we're at the first and last values it's fine to
search applicable values up to SCALE_FACTORS_STEP, on intermediate ones
we should stop in the middle of it, or we're end up overlapping the
previous scaling value domain.
In the said example in fact we were returning 2.666667 both when
looking to a scaling value close to 2.75 and 3.00 as the upper bound of
2.75 (3.0) was overlapping with the lower bound of 3.0 (2.75).
With the current code, the lower and upper bounds will be instead 2.875.
Adapt test to this, and this allows to also ensure that we're always
returning a sorted and unique list of scales (which is useful as also
g-c-c can ensure that this is true).
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1878>
Scaling values computation code served us well in the past years but
it's quite delicate and it has some issues in edge cases, so add a test
that verifies that the computed scaling values for all the most common
resolutions (and some that may be common in future) are what we expect
to be.
This may also serve us in future when we'd define a better algorithm to
compute the preferred scale, but this not the day.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1878>
We'll have two persistent client connections alive for the whole test,
one X11 client, and one Wayland client. So in order to be able to set up
the async waiter, do so after setting up the X11 client, as after that
we know we'll have a MetaX11Display ready to use.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1681>
While multiple built-in panels isn't actually supported in any
meaningful manner, if we would ever end up with such a situation, e.g.
due to kernel bugs[0], we shouldn't crash when trying to set an
'external only' without any external monitors.
While we could handle this with more degraded functionality (e.g. don't
support the 'switch' method of monitor configuration at all), handle it
by simply not trying to switch to external-only when there are no,
according to the kernel, external monitors available. This would e.g.
still allow betwene 'mirror-all', and 'linear' switches.
The crash itself was disguised as an arbitrary X11 BadValue error, due
to mutter trying to resize the root window to 0x0, as the monitor
configuration that was applied consisted of zero logical monitors, thus
was effectively empty.
[0] https://bugzilla.redhat.com/show_bug.cgi?id=1896904
Related: https://bugzilla.redhat.com/show_bug.cgi?id=1899260
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1607>
It's very useful to have common functions for easily creating a monitor
test setup for all kinds of tests, so move create_monitor_test_setup()
and check_monitor_configuration() and all the structs those are using to
monitor-test-utils.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1243
check_monitor_test_clients_state() is a function that's only meant to be
used in the monitor-unit-tests, and since we're going to move the
functions for creating MonitorTestSetups into a common file, this
function is going to be in the way of that. So move the checking of the
test client state outside of check_monitor_test_clients_state().
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1243
We're going to move the functions for building MonitorTestSetups to the
common monitor-test-utils.c file.
To make building test setups a bit more straightforward in case no
TestCaseExpect is wanted, change create_monitor_test_setup() to take a
MonitorTestCaseSetup instead of a MonitorTestCase as an argument.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1243
Previously the tile coordinate was used to offset a CRTC scanout
coordinate within a larger framebuffer. Since 3.36 we're always
scanning out from (0, 0) as we always have one framebuffer per CRTC; we
instead use the tile coordinate to calculate the coordinate the tile has
in the stage view. Adapt calculation to fulfil this promise instead of
the old one.
This also corrects the tiled custom monitor test case.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1199
It might not be available right on initialization time if X11 is started
asynchronously. As this is a requirement for our tests, ensure it is there
before proceeding with the test.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/944
To make it more reliable to distinguish between values that are read
from the backend implementation (which is likely to be irrelevant for
anything but the backend implementation), split out those values (e.g.
layout).
This changes the meaning of what was MetaCrtc::rect, to a
MetaCrtcConfig::layout which is the layout the CRTC has in the global
coordinate space.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1042