Derive the logical monitor position not by looking at the main output
(the (0, 0) tile), but the one that is placed on the top-left corner.
This might be the non-main output on certain transformations.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Add the transform as a logical monitor parameter, both when getting the
current state and applying a new configuration. The transform is defined
to be identical to MetaMonitorTransform.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Add support for rotated monitors. This is done per logical monitor, as
every monitor assigned to a logical monitor must be transformed in the
same way. This includes being transformed on the same level; e.g. if
the backend does not support transforming any monitor of a logical
monitor natively, then all monitors will be transformed using the
offscreen intermediate framebuffer.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Keep track of the logical monitor transform. When a logical monitor is
transformed, all of its monitors are also transformed in the same way.
A logical monitor can either be transformed on the CRTC level, or using
an offscreen intermediate buffer. In both cases will the logical
monitor be transformed, but only in the latter will the view be
transformed.
MetaCrtcs::transform currently does not represent whether the CRTC is
configured to be transformed or not; only when the backend can handle
it does it correctly correspond to the actual CRTC configuration. This
is intended to change with MetaMonitorConfigManager.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Instead of using a environment variable, add a new 'experimental
feature' gsetting keyword "monitor-config-manager" that enables the use
of the new MetaMonitorConfigManager. This commit also makes it possible
to switch between the two systems without restarting mutter.
The D-Bus API is disabled when the experimental feature is not enabled,
and clients trying to access it will get a access-denied error in
response. A new property 'IsExperimentalApiEnabled' is added to let the
D-Bus client know whether it is possible to use the experimental API or
not.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
This commit adds support for rendering onto enlarged per logical
monitor framebuffers, using the scaled clutter stage views, for HiDPI
enabled logical monitors.
This works by scaling the mode of the monitors in a logical monitors by
the scale, no longer relying on scaling the window actors and window
geometry for making windows have the correct size on HiDPI monitors.
It is disabled by default, as in automatically created configurations
will still use the old mode. This is partly because Xwayland clients
will not yet work good enough to make it feasible.
To enable, add the 'scale-monitor-framebuffer' keyword to the
org.gnome.mutter.experimental-features gsettings array.
It is still possible to specify the mode via the new D-Bus API, which
has been adapted.
The adaptations to the D-Bus API means the caller need to be aware of
how to position logical monitors on the stage grid. This depends on the
'layout-mode' property that is used (see the DisplayConfig D-Bus
documentation).
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Make the concept of maximum screen size optional, as it is not
necessarily a thing on all systems (e.g. when using the native backend
and stage views).
The meta_monitor_monitor_get_limits() function is replaced by a
meta_monitor_manager_get_max_screen_size() which fails when no screen
limit is available. Callers and other users of the previous max screen
size fields are updated to deal with the fact that the limit is
optional.
The new D-Bus API is changed to move it to the properties bag, where
its absence means there is no applicable limit.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Add a new D-Bus API that uses the state from GetCurrentState to
configure high level monitors, instead of low level CRTCs and
connectors. So far persistent configuration is not implemented, as
writing to the configuration store is still not supported.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
We don't want to limit ourself to whole integers for configuration, as
that'd mean it wouldn't be able to provide configurations for
fractional scalings. Thus, change scales to be referred to as floats
instead of ints.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Add a 'is_underscanning' entry to the properties map, if the monitor
supports underscanning. The client should assume a monitor does not
support underscanning if no property was added.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Add a D-Bus method for getting the current monitor and logical monitor
state. Currently does not contain information about transforms or any
limitations (such as limited CRTCs and cloning).
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Let the backends decide whether to just rebuild a derived state, or use
the NULL config to rebuild an empty logical state.
This also changes the expected screen size values of the no-outputs
test; as this case is actually handled now.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Replace the 'scale' of an output with a vfunc on the MetaMonitorManager
class that takes a monitor and a monitor mode which calculates the
scale. On X11 this always returns 1, on KMS, the old formula is used.
On the dummy and test backends, the already configured values are
returned.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
A MetaOutput is a connector, not exactly a monitor or a region on the
stage; for example tiled monitors are split up into multiple outputs,
and for what is used in input settings, that makes no sense. Change
this to use logical monitors instead of outputs.
https://bugzilla.gnome.org/show_bug.cgi?id=779745
Expose via a new API whether the transform on a logical monitor is
handled by the backend. This was previously only exposed only in the
native backend. This will be used to emulate not supporting transforms
in the backend in the nested backend.
https://bugzilla.gnome.org/show_bug.cgi?id=779745
Split up logical monitor cration into derived (when derived from
current underlying configuration) and non-derived (when creating from a
logical monitor configuration). This avoids that type of logic in the
logical monitor creation function.
https://bugzilla.gnome.org/show_bug.cgi?id=779745
Handle headless setup gracefully by having no logical monitors. This
commit only makes the monitor management code deal with it; other areas
may still not be able to handle it.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Handle configuring when the laptop lid is closed. This is so far
handled by creating a linear configuration while ignoring the laptop
panel. Changing the current configuration will come later.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Move the UpClients notify::lid-is-closed signal handling into
MetaMonitorManager, and put the getter behind a vfunc. This means
Placing it behind a vfunc allows custom backends to implement it
differently; for example the test backend can mock the state.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
The new monitor configuration system (MetaMonitorConfigManager) aims to
replace the current MetaMonitorConfig. The main difference between the
two is that MetaMonitorConfigManager works with higher level input
(MetaMonitor, MetaMonitorMode) instead of directly looking at the CRTC
and connector state. It still produces CRTC and connector configuration
later applied by the respective backends.
Other difference the new system aims to introduce is that the
configuration system doesn't manipulate the monitor manager state; that
responsibility is left for the monitor manager to handle (it only
manages configuration and creates CRTC/connector assignments, it
doesn't apply anything).
The new configuration system allows backends to not rely on deriving the
current configuration from the CRTC/connector state, as this may no longer be
possible (i.e. when using KMS and multiple framebuffers).
The MetaMonitorConfigManager system is so far disabled by default, as
it does not yet have all the features of the old system, but eventually
it will replace MetaMonitorConfig which will at that point be removed.
This will make it possible to remove old hacks introduced due to
limitations in the old system.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
The function meta_monitor_manager_read_current_config() was renamed to
meta_monitor_manager_read_current_state() as it does not read any
configuration, but reads the current state as described by the backend.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
In preparation of replacing the configuration system with one working
with high level monitors instead of low level outputs etc, move
configuarion handling code into obviously named function (containing
the word 'legacy'.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Don't deal with adding/removing tiled Xrandr monitors in the generic
backend, but leave it to the Xrandr backend. The tiled monitor will
itself notify the backend when such a monitor is added and removed.
Tiled Xrandr monitors are now based no MetaMonitor instead of
MetaLogicalMonitor. This means that mirrored tiled monitors will now be
represented correctly.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Instead of using crtcs and outputs to generate logical monitors, use
the ready made monitor abstraction that hides irrelevant things such as
monitor tiling etc.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Generate a set of "monitors" abstracting the physical concepts. Each
monitor is built up of one or more outputs; multiple outputs being
tiled monitors. Logical monitors will later be built from these.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
The MetaMonitorMode referred to the mode of a CRTC, and with the future
introduction of a MetaMonitor, theh old name would be confusing.
Instead call it what it is.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Instead of storing the logical monitors in an array and having users
either look up them in the array given an index or iterate using
indices, put it in a GList, and use GList iterators when iterating and
alternative API where array indices were previously used.
This allows for more liberty regarding the type of the logical monitor.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Refactor the tiled monitor assembly code (that constructs a logical
monitor out of tiling information. Part of the reason is to move away
from array based storage, part is to make the code easier to follow,
and part is to separate logical monitor construction from list
manipulation.
https://bugzilla.gnome.org/show_bug.cgi?id=777732