Currently, the maximum size for a mouse pointer bitmap for screen
casting is 64x64 pixels.
However, this limit is hit way too often as it is way too low and
results in crashes in either gnome-remote-desktop or mutter.
For example: The a11y settings in g-c-c allow setting a larger pointer
bitmap in order to increase the visibility of the mouse pointer.
With the current limit of 64x64 pixels it is not possible to use the
larger variants of the default mouse pointer bitmap, without
experiencing any crash.
Another way to hit the limit is when display scaling is used or some
game uses a custom (large) mouse pointer bitmap.
The VNC backend in gnome-remote-desktop does not seem to have a maximum
pointer bitmap size.
The RDP backend on the other hand has a maximum pointer bitmap size at
384x384.
Use this size (384x384) as maximum size instead of the current 64x64
size for mouse pointer bitmaps to avoid crashes in mutter and
gnome-remote-desktop and to ensure that bigger mouse pointer bitmaps
can be used.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1414
It is linear config manager created when ensuring configuration.
However, the switch config is not set as LINEAR, but left as UNKNOWN.
This leads switch mode OSD always shows "Join Displays" icon, rather
than the next icon which is "External Only" after connect an external
display and press Super+P once at first time since mutter starts.
This patch moves switch config setting into
meta_monitor_config_manager_create_linear() (and the sibling functions)
to well prepare the monitors config and avoid missing settings.
This is a regression introduced by 149e4d69345a.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1362
The delete event was used for signalling the close button was clicked on
clutter windows. Being a compositor we should never see these, unless
we're running nested. Remove the plumbing of the DELETE event and just
directly call meta_quit() when we see it, if we're running nested.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1364
We checked if we were using the usig the X11 backend to decide when to
deal with a11y event posting - in order to make the clutter code less
windowing system dependent, make this check a check whether we're a
display server or not, in contrast to a window/compositing manager
client. This is made into a vfunc ot ClutterBackendClass, implemented by
MetaClutterBackendNative and MetaClutterBackendX11.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1364
Flip flop resize, which is the result of respecting ConfigureNotify
makes test annoyingly racy, as one cannot do
clutter_actor_set_size (stage, 1024, 768);
wait_for_paint (stage);
g_assert_assert (clutter_actor_get_width (stage) == 1024);
The reason for this is any lingering ConfigureNotify event that might
arrive in an inconvenient time in response to some earlier resize.
In order to not risk breaking any current behavior in the X11 CM case
(running as a compositing window manager), only avoid changing the stage
size in response to ConfigureNotify when running nested.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1404
This aims to make sure a view and its resources are destroyed when it
should. Using references might keep certain components (e.g frame clock)
alive for too long.
We currently don't take any long lived references to the stage view
anywhere, so this doesn't matter in practice, but this may change, and
will be used by a to be added test case.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1404
Without doing this, we'd use the same sprite that was last set by
mutter, most likely a leftptr cursor, and fail to update when e.g.
moving the pointer above a text entry and the displayed cursor updated
to a cursor position marker.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1391
The displayed cursor is the one displayed on the screen, e.g. via the
hardware cursor plane, by Xorg, or using the stage overlay.
When screen recording under X11, we don't get a stream of pointer and
cursor updates, as they might be grabbed by some other client. Because
of this, the cursor tracker or cursor renderer are not kept up to date
with positional and cursor state.
To be able to use the stage overlays when recording, we need to be able
to update the overlay without updating the displayed cursor, as we
shouldn't update the X server with cursor state we just retrieved from
it.
Thus, to achieve this, create a separate overlay cursor pointer. When
being a display server, they are always the same, but when using X11,
during screen recording, the overlay one will be polled at a fixed
interval to get a somewhat up to date state.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1391
Always force-track the cursor position (so that the X11 backend can keep
it up to date), and if the cursor wasn't part of the sampled
framebuffer when reading pixels into CPU memory, draw it in an extra
pass using cairo after the fact. The cairo based cursor painting only
happens on the X11 backend, as we otherwise inhibit the hw cursor.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1391
On X11 we won't always receive cursor positions, as some other client
might have grabbed the pointer (e.g. for implementing a popup menu). To
make screen casting show a somewhat correct cursor position, we need to
actively poll the X server about the current cursor position.
We only really want to do this when screen casting or taking a
screenshot, so add an API that forces the cursor tracker to track the
cursor position.
On the native backend this is a no-op as we by default always track the
cursor position anyway.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1391
Only when the cursor isn't handled by the backend is the overlay made
visible. This is intended to be used when painting the stage to an
offscreen using clutter_stage_paint_to_(frame)buffer() in a way where
the cursor is always included.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1391
Detect displays marked as 'non-desktop' by the kernel and skip them when
creating the outputs. Mutter is not able to render images that are shown
properly on those devices anyway.
This avoids lighting up attached VR HMDs and showing the GDM login
screen between the eyes in a VR HMD instead of on the monitor.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1393
Intended to be used to pass state from screen cast clients down the
line. The first use case will be a boolean whether a screen cast is a
plain recording or not, e.g. letting the Shell decide whether to use a
red dot as the icon, or the generic "sharing" symbol.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1377
The new "id" properties for the MetaCrtc* and MetaOuput* objects are 64-bit
values, so take care to pass 64-bit values when calling g_object_new.
Fixes https://gitlab.gnome.org/GNOME/mutter/-/issues/1343.
When using its EGLStream-based presentation path with the proprietary NVIDIA
driver, mutter will use a different function to process page flips -
custom_egl_stream_page_flip. If that fails due to an EBUSY error, it will
attempt to retry the flip. However, when retrying, it unconditionally uses the
libdrm-based path. In practice, this causes a segfault when attempting to
access plane_assignments->fb_id, since plane_assignments will be NULL in the
EGLStream case. The issue can be reproduced reliably by VT-switching away from
GNOME and back again while an EGL application is running.
This patch has mutter also use the custom page flip function when retrying the
failed flip.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1375
Instead of blindly hoping that `$INCLUDE` contains the parent directory
of `gsettings-desktop-schemas`.
Because `gsettings-desktop-schemas.pc` says:
```
Cflags: -I/SOME/DIRECTORY/gsettings-desktop-schemas
```
Which means to include the version that Meson has configured you need
to drop the directory prefix and only `#include <gdesktop-enums.h>`.
This fixes a build failure with local installs triggered by 775ec67a44
but it's also the right thing to do™.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1370
During animation or other things that cause multiple frames in a row
being painted, we might skip recording frames if the max framerate is
reached.
Doing so means we might end up skipping the last frame in a series,
ending with the last frame we sent was not the last one, making things
appear to get stuck sometimes.
Handle this by creating a timeout if we ever throttle, and at the time
the timeout callback is triggered, make sure we eventually send an up to
date frame.
This is handle differently depending on the source type. A monitor
source type reports 1x1 pixel damage on each view its monitor overlaps,
while a window source type simply records a frame from the surface
directly, except without recording a timestamp, so that timestamps
always refer to when damage actually happened.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1361
Now that we don't use the record function to early out depending on
implicit state (don't record pixels if only cursor moved for example),
let it simply report an error when it fails, as we should no longer ever
return without pixels if nothing failed.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1361
Both do more or less the same but with different methods - one puts
pixels into a buffer using the CPU, the other puts pixels into a buffer
using the GPU.
However, they are behaving slightly different, which they shouldn't.
Lets first address the misleading disconnect in naming, and later we'll
make them behave more similarly.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1361
Replace the default master clock with multiple frame clocks, each
driving its own stage view. As each stage view represents one CRTC, this
means we draw each CRTC with its own designated frame clock,
disconnected from all the others.
For example this means we when using the native backend will never need
to wait for one monitor to vsync before painting another, so e.g. having
a 144 Hz monitor next to a 60 Hz monitor, things including both Wayland
and X11 applications and shell UI will be able to render at the
corresponding monitor refresh rate.
This also changes a warning about missed frames when sending
_NETWM_FRAME_TIMINGS messages to a debug log entry, as it's expected
that we'll start missing frames e.g. when a X11 window (via Xwayland) is
exclusively within a stage view that was not painted, while another one
was, still increasing the global frame clock.
Addititonally, this also requires the X11 window actor to schedule
timeouts for _NET_WM_FRAME_DRAWN/_NET_WM_FRAME_TIMINGS event emitting,
if the actor wasn't on any stage views, as now we'll only get the frame
callbacks on actors when they actually were painted, while in the past,
we'd invoke that vfunc when anything was painted.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/903
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/3https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285
This also changes the view construction path used by the renderer view
to use the new 'add_view()' function, meaning we have a common entry
point for views into the renderer, which will be useful later on.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285