Prior to 'compositor: Destroy actors when unmanaging', window actors
were destroyed when the compositor object was destroyed, long after the
windows were unmanaged, however, when this instead changed to happen
when unmanaging, with the original goal to avoid having these actors try
to interact with the disposed MetaCompositor instance, it caused an
issue where window actors would be indirectly destroyed as a side effect
of their parents being destroyed, which caused some fallout in the logic
handling window-close animation tracking, which relies on
meta_window_actor_queue_destroy() being called before a window actor is
actually destroyed.
Fix this by unmanaging windows before unmanaging the compositor.
From an X11 point of view, this should be harmless, since all it really
do is call XCompositeUnredirectSubwindows().
For the native backend and the common behavior, all unmanaging the
compositor instance does is destroy clutter actors, so doing so after
window actors were already cleaned up should not be a problem, as this
was the case before too.
Fixes: 35ac3a096d84de97c1da9a54d99aebf7640c1c07
Closes: https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/5330
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2403>
When switching between the existence and not of a stage ClutterGrab, we
would correctly attempt to synchronize key focus from the perspective of
the Wayland clients.
But this synchronization should do its own checks about existing stage
grabs before determining a client window has key focus or not.
Add that check, so that grabs correctly unfocus the keyboard in Wayland
clients, in addition to pointers and touch.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2194
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2366>
meta_window_(un)queue() was implemented with global arrays in window.c
that managed MetaLater handle IDs and lists of window queues. In order
to rely less on scattered static variables and making it clearer that
we're dealing with per display window management and not something
specific to a single window, move the window resize/calc-showing queue
management to MetaDisplay.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2264>
When privacy screen is changed and this happens on explicit user request
(that is not a setting change) we should notify about this via an OSD.
To perform this, we keep track of the reason that lead to a privacy
screen change, and when we record it we try to notify the user about.
When the hardware has not an explicit hotkey signal but we record a
change we must still fallback to this case.
Fixes: #2105
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1952>
Since this signal is in a hot path during input handling, it makes sense
not to have this be a signal at all, currently most of the time spent in
it is in GLib signal machinery itself.
Replace it with a function/user data pair that are set on the sprite
itself. Only the places that create an sprite are interested in hooking
one ::prepare-at behavior per sprite, so we can do with a single pair.
This makes meta_cursor_sprite_prepare_at() inexpensive enough.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1915>
Change some things in these "app is alive" checks:
- The dialog timeout is separated from the ping timeout, in order
to show it again at a constant rate after dismissing, despite in
flight pings. It still shows immediately after the first failed
ping.
- As we want to tap further into is-alive logic, MetaWindow now
made it a property, that other places in code can fetch and
subscribe.
- Motion events trigger ping (as long as there was none other in
flight for the same window), and are counted between ping and
pong, in order to preemptively declare the window as not alive
before there is trouble with event queues being overflown.
This results in a separate logic between "the application does
not respond" and "we are showing the close dialog" so that the
former may get triggered independently.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2122>
We setup Xwayland in an early phase of the X11 display, before we had a
MetaX11Display, and teared down in a couple of places happening when
tearing down the Xwayland integration if the X server died or
terminated. It was a bit hard to follow what happened and when it
happened. Attempt to clean this up a bit, with things being structured
as follows:
* Early during X11 display connection setup, only setup the rudimentary
X11 hooks, being the libX11 error callbacks, and adding the local
user to XHost.
* Move "initialize Xwayland component" code to a new
'x11-display-setup' signal handler. Things setup here are cleaned up
in the 'x11-display-closing' handler.
* Connect to 'x11-display-setup' and 'x11-display-closing' up front,
and stay connected to these two.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1796>
Added a function `meta_window_set_inactive_since` it sets
xattr on the cgroup directory for the given MetaWindow.
Resource management daemons can then monitor these changes on xattr
and make allocation decisions accordingly.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1960>
This object takes over the functionality of meta-idle-monitor-dbus.c,
meta-idle-monitor.c and meta-backend.c, all related to higher level
management of idle watches etc.
The idle D-Bus API is changed to be initialized by the backend instead
of MetaDisplay, as it's more of a backend functionality than what
MetaDisplay usually deals with.
It also takes over the work of implementing "core" idle monitors. The
singleton API is replaced with thin wrapper functions on the backend.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1859>
Make sure to reset all the state that was set for an interactive grab op
back to the defaults after a grab op has ended.
Especially important here is setting grab_frame_action back to FALSE,
since this will constrain window-titlebars to the panel. We set this to
TRUE on some grabs, for example when resizing, but not when moving
windows. Since this remained being set to TRUE, it would also constrain
non-grab window movements, like calling MetaWindow.move_frame(), which
is used by gnome-shells OSK. By resetting it back to FALSE after a grab,
the OSK can now always move non-maximized windows to the position it
wants.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1736>
GObject signals pass the emitting GObject as the first argument to
signal handler callbacks. When refactoring the grab-op-begin/end signals
to remove MetaScreen with commit 1d5e37050df2b8e1db8b5ea301ee0162d77d4b74,
the "screen" argument was replaced with a "display" argument instead of
being removed completely. This made us call the signal handlers with two
identical MetaDisplay arguments, which is very confusing and actually
wasn't handled in a grab-op-begin handler in gnome-shell.
So fix this by not adding the MetaDisplay as an argument to those
signals, GObject will take care of that for us.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1734>
Since commit c255031b6d6 we pass scroll-events through to
the compositor if the window_grab_modifiers are pressed;
in order to allow gnome-shell to check for those events,
expose the struct member as a MetaDisplay property.
Also take the opportunity to pick a more generic name, now
that the modifier is no longer used exclusively for mouse
clicks (unless we maintain the notion of scroll events as
button 4 and 5 "clicks").
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1695>
Banish MetaInputSettings from MetaBackend "public" API, it's now meant to
spend the rest of its days in the backend dungeons, maybe hanging
off a thread.
MetaInputMapper replaces all external uses.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1403>
This is already taken care of in meta_backend_monitors_changed(), called
from the same code paths that emit ::monitors-changed-internal. It is
better to leave this up to backend internals.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1448
We would get the MetaDisplay from the backend singleton before creating
the MetaCompositor, then in MetaCompositor, get the backend singleton
again to get the stage. To get rid of the extra singleton fetching, just
pass the backend the MetaCompositor constructors, and fetch the stage
directly from the backend everytime it's needed.
This also makes it available earlier than before, as we didn't set our
instance private stage pointer until the manage() call.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1289
Try to bypass compositing if there is a fullscreen toplevel window with
a buffer compatible with the primary plane of the monitor it is
fullscreen on. Only non-mirrored is currently supported; as well as
fullscreened on a single monitor. It should be possible to extend with
more cases, but this starts small.
It does this by introducing a new MetaCompositor sub type
MetaCompositorNative specific to the native backend, which derives from
MetaCompositorServer, containing functionality only relevant for when
running on top of the native backend.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/798
MetaCompositor is the place in mutter that manages the higher level
state of compositing, such as handling what happens before and after
paint. In order for other units that depend on having a compositor
instance active, but should be initialized before the X11 implementation
of MetaCompositor registers as a X11 compositing manager, split the
initialization of compositing into two steps:
1) Instantiate the object - only construct the instance, making it
possible for users to start listening to signals etc
2) Manage - this e.g. establishes the compositor as the X11 compositing
manager and similar things.
This will enable us to put compositing dependent scattered global
variables into a MetaCompositor owned object.
For now, compositor management is internally done by calling a new
`meta_compositor_do_manage()`, as right now we can't change the API of
`meta_compositor_manage()` as it is public. For the next version, manual
management of compositing will removed from the public API, and only
managed internally.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/798
This is so that cogl-trace.h can start using things from cogl-macros.h,
and so that it doesn't leak cogl-config.h into the world, while exposing
it to e.g. gnome-shell so that it can make use of it as well. There is
no practical reason why we shouldn't just include cogl-trace.h via
cogl.h as we do with everything else.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1059
MetaGravity is an enum, where the values match the X11 macros used for
gravity, with the exception that `ForgetGravity` was renamed
`META_GRAVITY_NONE` to have less of a obscure name.
The motivation for this is to rely less on libX11 data types and macros
in generic code.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/705
This is made a signal, so the upper layers (read: gnome-shell) may
decide what services to spawn. The signal argument contains a task
that will resume MetaX11Display startup after it is returned upon.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/945
We artificially made Xwayland initialization synchronous, as we used
to rely on MetaX11Display and other bits during meta_display_open().
With support for Xwayland on demand and --no-x11, this is certainly
not the case.
So drop the main loop surrounding Xwayland initialization, and turn
it into an async operation called from meta_display_init_x11(). This
function is turned then into the high-level entry point that will
get you from no X server to having a MetaX11Display.
The role of meta_init() in Xwayland initialization is thus reduced
to setting up the sockets. Notably no processes are spawned from here,
deferring that till there is a MetaDisplay to poke.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/944
This ATM completes the task right away, but we will want to do
further things here that are asynchronous in nature, so prepare
for this operation being async.
Since the X11 backend doesn't really need this, make it go on
the fast lane and open the MetaX11Display right away, the case
of mandatory Xwayland on a wayland session is now handled
separately.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/944
This used to be set on meta_compositor_manage(), but only if there is a
MetaX11Display. Given meta_display_init_x11() is Wayland only, and we can
always assume compositing to be enabled, just have it invariably set after
the X server is up.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/944
The check-alive feature is there for the user to be able to terminate
frozen applications more easily. However, sometimes applications are
implemented in a way where they fail to be reply to ping requests in a
timely manner, resulting in that, to the compositor, they are
indistinguishable from clients that have frozen indefinitely.
When using an application that has these issues, the GUI showed in
response to the failure to respond to ping requests can become annoying,
as it disrupts the visual presentation of the application.
To allow users to work-around these issues, add a setting allowing them
to configure the timeout waited until an application is considered
frozen, or disabling the check completely.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1080
If a window already is being pinged, it doesn't make sense to send more
pings to the window, instead we should just wait for that answer or
timeout until we send a new one.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/891
Using a timestamp twice in a row (e.g. when activating two windows in
response to the same event or due to other bugs) will break the window
detection and show a close dialog on the wrong window. This is a grave
error that should never happen, so check every timestamp before sending
the ping for uniqueness and if the timestamp was already used and its
ping is still pending, log a warning message and don't send the ping.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/891