The unknown color space's only purpose is to signal that the current KMS
state has a unknown color space set. It is not one of the color spaces
that can be set. We already only try to set a color space if the default
color space is supported so we should use the default color space as a
fallback instead of the unknown color space.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2693
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2915>
We might get told to restore the old monitor configuration by the
monitor configuration prompt, in case the user pressed "revert" or
equivalent. This might be in response to a button press, and those
happen during frame clock dispatch. If we would restore an old
configuration during dispatch, it means we would reconfigure the
monitors including their stage views while dispatching, which means we'd
destroy the frame clock while it's dispatching.
Doing that causes problems, as the frame clock isn't expecting to be
destroyed mid-function. Specifically,
We'd enter
clutter_frame_clock_dispatch (clutter-frame-clock.c:811)
frame_clock_source_dispatch (clutter-frame-clock.c:839)
g_main_dispatch (gmain.c:3454)
g_main_context_dispatch (gmain.c:4172)
g_main_context_iterate.constprop.0 (gmain.c:4248)
g_main_loop_run (gmain.c:4448)
meta_context_run_main_loop (meta-context.c:482)
main (main.c:663)
which would first call
_clutter_process_event (clutter-main.c:920)
_clutter_stage_process_queued_events (clutter-stage.c:757)
handle_frame_clock_before_frame (clutter-stage-view.c:1150)
which would emit e.g. a button event all the way to a button press
handler, which would e.g. deny the new configuration:
restore_previous_config (meta-monitor-manager.c:1931)
confirm_configuration (meta-monitor-manager.c:2866)
meta_monitor_manager_confirm_configuration (meta-monitor-manager.c:2880)
meta_plugin_complete_display_change (meta-plugin.c:172)
That would then regenerate the monitor configuration and stage view
layout, which would destroy the old stage view and frame clock.
meta_stage_native_rebuild_views (meta-stage-native.c:68)
meta_backend_native_update_screen_size (meta-backend-native.c:457)
meta_backend_sync_screen_size (meta-backend.c:266)
meta_backend_monitors_changed (meta-backend.c:337)
meta_monitor_manager_notify_monitors_changed (meta-monitor-manager.c:3595)
meta_monitor_manager_rebuild (meta-monitor-manager.c:3683)
meta_monitor_manager_native_apply_monitors_config (meta-monitor-manager-native.c:343)
meta_monitor_manager_apply_monitors_config (meta-monitor-manager.c:704)
After returning back to the original clutter_frame_clock_dispatch()
frame, various state in the frame clock will be gone and we'd crash.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2901>
We have the drm/InfoFrame encoding and our MetaOutputHdrMetadata
encoding. Check that we can correctly convert between each other by
doing a encode/decode and decode/encode roundtrip and then checking for
equality.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2879>
The existence of the KMS property just means that we can send an
InfoFrame but we also have to make sure the sink actually supports the
metadata type 1 and the selected transfer function.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2879>
Allows to prepare KMS updates to set the color space and HDR Static
Metadata on the output.
For some reason we need ALLOW_MODESET on commits which change the HDR
Static Metadata InfoFrame on AMDGPU. There is no technical reason why
one needs to mode set to send an InfoFrame and the driver should just
manage without ALLOW_MODESET. Until this is resolved in the kernel we
just prepare KMS updates which might mode set.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2879>
The HDR Static Metadata InfoFrame contents are described in CTA-861.3
and the kernel maintains a representation of that in `struct
hdr_metadata_infoframe` in `include/uapi/drm/drm_mode.h`.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2879>
The Colorspace property informs the display about the colorimetry of the
content. Only variants supported by the sink are exposed in the
property. The strings representing the color spaces are undocumented but
can be found in the `hdmi_colorspaces` list in
`drivers/gpu/drm/drm_connector.c` in the Linux kernel (v 6.2).
The HDR_OUTPUT_METADATA property is a blob with the InfoFrame content.
We have to query support for the different values in the struct from the
EDID/DisplayID ourselfs.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2879>
This adds a new 'experimental-hdr' string property to the MonitorManager
which can be changed from looking glass.
Currently when the string equals 'on', HDR (PQ, Rec2020) will be enabled
on all monitors which support it. In the future support for more
transfer functions and color spaces as well as HDR metadata can be
added.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2879>
The color space and HDR metadata are eventually sent as metadata to the
display. The color space informs the display of the colorimetry of the
frames we produce, the HDR metadata informs the display of the transfer
function and additional mastering display colorimetry and luminance to
guide tone and gamut mapping.
The only color spaces we support right now are the default color space
and Rec bt.2020 which is typically used for HDR content. Other supported
color spaces can be added when needed.
The default color space corresponds to whatever colorimetry the display
has when no further changes are made to the calibration of the display.
The colorimetry is communicated to sources via EDID/DisplayID.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2879>
We relied on them being valid longer to keep track of used GPUs. If we
don't have the CRTC (or output) we don't have a way to fetch the pointer
to the MetaGpu that drives the associated monitor.
This avoids a crash when trying to fetch said pointer from what would be
the NULL MetaCrtc pointer.
Fixes: 08593ea872 ("onscreen/native: Hold ref to the output and CRTC until detached")
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2667
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2887>
When an onscreen is "attached" it means it has an active CRTC and output
it interacts with, e.g. listens to configuration changes to update gamma
and privacy screen state.
MetaOutput and MetaCrtc are rather short lived objects meaning they are
disposed of and regenerated each time the compositor reloads monitor
resources, and while MetaOutput are indirectly kept alive due to the
MetaMonitor holding on to them during reloading, the same does not apply
to MetaCrtc, so to avoid trying to disconnect our signals from
disappeared outputs and CRTCs when we dispatch, hold our own references
to these objects.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2665
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2885>
On exit, explicitly detach the onscreens during disposal. This means no
functional changes, but allows for doing more cleanup on detach that
doesn't need to be repeated on disposal.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2885>
As implemented in colord 1.4.6, cd_icc_load_handle() has three possible
results:
1. success, taking ownership of the profile;
2. failure because cmsGetProfileContextID returns NULL, *not* taking
ownership of the profile;
3. failure in cd_icc_load(), taking ownership of the profile.
The previous commit ensures that we are not in case 2.
In case 3 where cd_icc_load() fails, ownership was already given to
the colord CdIcc object, so it will be freed when the g_autoptr unrefs
the CdIcc, and we must not free it again: that would be a double-free,
potentially resulting in memory corruption.
Resolves: https://gitlab.gnome.org/GNOME/mutter/-/issues/2659
Signed-off-by: Simon McVittie <smcv@debian.org>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2877>
We want to avoid using too high scales too easily, which started to
happen 2f1dd049bf ("monitor-manager: Rework default scale factor
selection"). Instead of using the closest non-fractional scale, which
effectively is what we'd do, only round upwards if we're closer than
0.25 (25%).
Since there are some wiggle room for scales to make the logical
resolution on the integer pixel grid, make sure to compensate. This
compensation is done by adding an extra 0.2 to scale difference.
For example the following fractional scales will get these corresponding
integer scales:
* 1.25 -> 1.0
* 1.5 -> 1.0
* 1.75 -> 2.0
* 2.0 -> 2.0
* 2.50 -> 2.0
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2880>
Instead of testing headless start using the dummy backend, do so with
the real native backend, and use the drm-mock library instead to emulate
monitors being disconnected at startup.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2821>
As part of https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/525
(introduction of transactional KMS API), the logic determining whether a
GPU can have outputs was changed from whether any connectors existed to
whether any connected connectors existed. That effectively meant that we
wouldn't attempt to start at all if there were no monitors connected
while starting up.
This was unintentional, so lets revert back the expected behavior.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2821>
In order to make things more and more asynchronus and to each time we
paint be an isolated event, that can be potentially be applied
individually or together with other updates, make it so that each time
we draw, we use the transient MetaFrameNative (ClutterFrame) instance to
carry a KMS update for us.
For this to work, we also need to restructure how we apply mode sets.
Previously we'd amend the same KMS update each frame during mode set,
then after the last CRTC was composited, we'd apply the update that
contained updates for all CRTC.
Now each CRTC has its own KMS update, and instead we put them in a per
device table, and whenever we finished painting, we'll merge the new
update into any existing one, and then finally once all CRTCs have been
composited, we'll apply an update that contains all the mode sets for all
relevant CRTCs on a device.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2855>
MetaRendererViewNative is a MetaRendererView which contains logic
specific to views of the native backend. It will be used by following
commits.
In the future, per-view logic from MetaRendererNative can be moved to
MetaRendererViewNative where it makes more sense to have it.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2855>
Instead of using the "discarded" page flip callback when the
"discarding" happened during actual immediate processing, communicate
the same via the KMS update feedback.
The "discarded" page flip callback is instead used only for when a
posted page flip is discarded. In the atomic backend, this only happens
on shutdown, while in the simple backend, this also happens when a
asynchronous retry sequence eventually is abandoned.
This allows further improvements making KMS handling fully async.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2854>
At first it was called seal(), but then updates could be amended after
being posted, given a flag. That flag has been removed, so we can go
back to sealing, since it's once again acts more as a seal.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2854>
We test direct client buffer scanout using a TEST_ONLY commit on atomic,
and with various conditions in non-atomic, but if we end up failing to
actually commit despite this, handle the fallout asynchronously. What
this means is that we'll reschedule a new frame immediately.
For this to work, the same scanout buffer needs to be avoided for the
same CRTC. This is done by using the newly added signal on the
CoglScanout object to let the MetaWaylandBuffer object mark the current
buffer as non-working for the onsrceen that it failed on. This allows to
re-try buffers on the same onscreen when new ones are attached.
This queues a full damage, since we consumed the qeued redraw rect. The
redraw rect wasn't lost - it was accumulated to make sure the whole
primary plane was redrawed according to the damage region, whenever we
would end up no longer doing direct scanout, but this accumulation only
works when we're not intentionally stopping to scanout. For now, lets
just damage the whole view, it's just an graceful fallback in response
to an unexpected error anyway.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2854>
If we get a "ready" page flip feedback, it means the page flip was
symbolic, i.e. not real, e.g. as a result of an update that didn't
change the state of the primary plane. Warn if there is a "next fb"
meaning we expected to have a new buffer that we flipped to.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2854>