Add a CoglFrameInfo object that tracks timing information for frames
that are drawn. We track a frame counter and frame timing information
for each CoglOnscreen. Internally a CoglFrameInfo is automatically
created for each frame, delimited by cogl_onscreen_swap_buffers() or
cogl_onscreen_swap_region() calls.
CoglFrameInfos are delivered to applications via frame event callbacks
that can be registered with a new cogl_onscreen_add_frame_callback()
api. Two initial event types (dispatched on all platforms) have been
defined; a _SYNC event used for throttling the frame rate of
applications and a _COMPLETE event used so signify the end of a frame.
Note: This new _add_frame_callback() api makes the
cogl_onscreen_add_swap_complete_callback() api redundant and so it
should be considered deprecated. Since the _add_swap_complete_callback()
api is still experimental api, we will be looking to quickly migrate
users to the new api so we can remove the old api.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
(cherry picked from commit 700401667db2522045e4623d78797b17f9184501)
Add a new BUFFER_AGE winsys feature and a get_buffer_age method to
cogl-onscreen that allows to query the value.
https://bugzilla.gnome.org/show_bug.cgi?id=669122
Reviewed-by: Neil Roberts <neil@linux.intel.com>
Reviewed-by: Robert Bragg <robert@linux.intel.com>
Note: When landing the patch I made some gtk-doc updates and changed
_get_buffer_age to return an age of 0 always if the age feature isn't
support instead of using _COGL_RETURN_VAL_IF_FAIL. -- Robert Bragg
(cherry picked from commit 427b1038051e9b53a071d8c229b363b075bb1dc0)
The GL3 context is created using the glXCreateContextAttribs function
which is part of the GLX_ARB_create_context extension. However
previously the function pointers from GLX extensions were only
retrieved once the GL context is created. That meant that the GL3
context creation function would always assume that the extension is
not supported so it would always fail.
This patch changes it to query the functions when the renderer is set
up instead. The base winsys feature flags that are determined while
querying the functions are stored in a member of CoglGLXRenderer.
These are then copied to the CoglContext when it is initialised.
The spec for glXGetProcAddress says that the functions returned are
context-independent. That implies that it is safe to call it without
binding a context although that is not explicitly stated as far as I
can tell. A big of googling finds this DRI documentation which says it
can be used without a context:
http://dri.freedesktop.org/wiki/glXGetProcAddressNeverReturnsNULL
And also this code sample:
http://www.opengl.org/wiki/Tutorial:_OpenGL_3.0_Context_Creation_%28GLX%29
One point that makes me concerned that this might not always work in
practice is that the code in SDL2 to create a GL3 context first
creates a dummy GL2 context in order to have something bound before it
calls glXGetProcAddress. I think this may just be a misunderstanding
based on how wglGetProcAddress works however.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
(cherry picked from commit 04a7aca9a98e84e43ac5559305a1358112902e30)
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
Previously the Xlib renderer data was meant to be the first member of
whatever the winsys data is. This doesn't work well for the EGL winsys
because it only needs the Xlib data if the X11 platform is used. The
Xlib renderer data is now instead created on demand and connected to
the object using cogl_object_set_user_data. There is a new function to
get access to it.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
Previously, _cogl_get_proc_address had a fallback to resolve the
symbol using g_module_open(NULL) to get the symbol from anywhere in
the address space. The EGL backend ends up using this on some drivers
because eglGetProcAddress isn't meant to return a pointer for core
functions. This causes problems if something in the process is linking
against a different GL library, for example Cairo may be linking
against libGL itself. In this case it may end up resolving symbols
from the GL library even if GLES is being used.
This patch removes the fallback. The EGL version now has its own
fallback instead which passes the existing libgl_module from the
renderer to g_module_symbol so that it should only get symbols from
that library or its dependency chain. The GLX and WGL winsys only call
glXGetProcAddress and wglGetProcAddress. The stub winsys does however
continue using the global symbol lookup.
The internal _cogl_get_proc_address function has been renamed to
_cogl_renderer_get_proc_address because it needs a connected renderer
to work so it could be considered to be a renderer method. The pointer
to the renderer is passed down to the winsys backends so that it can
use the data attached to the renderer to get the module pointers.
https://bugzilla.gnome.org/show_bug.cgi?id=655412
Reviewed-by: Robert Bragg <robert@linux.intel.com>
The GL or GLES library is now dynamically loaded by the CoglRenderer
so that it can choose between GL, GLES1 and GLES2 at runtime. The
library is loaded by the renderer because it needs to be done before
calling eglInitialize. There is a new environment variable called
COGL_DRIVER to choose between gl, gles1 or gles2.
The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have
been changed so that they don't assume the ifdefs are mutually
exclusive. They haven't been removed entirely so that it's possible to
compile the GLES backends without the the enums from the GL headers.
When using GLX the winsys additionally dynamically loads libGL because
that also contains the GLX API. It can't be linked in directly because
that would probably conflict with the GLES API if the EGL is
selected. When compiling with EGL support the library links directly
to libEGL because it doesn't contain any GL API so it shouldn't have
any conflicts.
When building for WGL or OSX Cogl still directly links against the GL
API so there is a #define in config.h so that Cogl won't try to dlopen
the library.
Cogl-pango previously had a #ifdef to detect when the GL backend is
used so that it can sneakily pass GL_QUADS to
cogl_vertex_buffer_draw. This is now changed so that it queries the
CoglContext for the backend. However to get this to work Cogl now
needs to export the _cogl_context_get_default symbol and cogl-pango
needs some extra -I flags to so that it can include
cogl-context-private.h
we've got into a bit of a mess with how we name platform specific
symbols and files, so this is a first pass at trying to tidy that up.
All platform specific symbols should be named like
cogl_<platform>_symbol_name and similarly files should be named like
cogl-<platform>-filename.c
This patch tackles the X11 specific renderer/display APIs as a start.
Signed-off-by: Neil Roberts <neil@linux.intel.com>