Handle the case of a TOUCH_BEGIN event during window dragging separately
instead of treating it like a TOUCH_UPDATE event: Simply return TRUE to
make Clutter stop event propagation if it's the pointer emulating
sequence and let Clutter propagate the event if it isn't.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/427>
Window dragging should be cancelled when the touch sequences we're using
are no longer available. Also listen to TOUCH_CANCEL events if the
window is grabbed and cancel the grab op when a TOUCH_CANCEL event
happens.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/427>
X11 clients can use different models of input handling, of which some
may not result focus being set synchronously.
For such clients, meta_focus_window() will not change the focus itself
but rely on the client itself to set the input focus on the desired
window.
Add a new MetaWindow API to check when dealing with such a window.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1716>
Since commit c255031b6d we pass scroll-events through to
the compositor if the window_grab_modifiers are pressed;
in order to allow gnome-shell to check for those events,
expose the struct member as a MetaDisplay property.
Also take the opportunity to pick a more generic name, now
that the modifier is no longer used exclusively for mouse
clicks (unless we maintain the notion of scroll events as
button 4 and 5 "clicks").
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1695>
We remove pending pings when unmanaging a window, but currently
don't prevent new pings to be scheduled after that.
The previous commit fixed a code path where this did indeed happen,
but as the result of gnome-shell trying to attach a Clutter actor
to a non-existent window actor is pretty bad, also guard can_ping()
against being called for an unmanaging window.
https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/2467
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1676>
As planned and prepared with the last commits, let ClutterStage take
care of tracking input devices and their respective actors. This means
we now can remove the old infrastructure for this from
ClutterInputDevice.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1633>
Constantly manipulating the stack caused severe stalls (several seconds)
with many open windows when switching workspaces. The cause for this was
that each show/hide call dealt with the stack in isolation, meaning if
you hid N windows, we'd manipulate and synchronize the stack N times,
potentially doing synchronous calls to the X server while doing so.
Avoid the most severe stalls by freezing the stack while calculating
showing; this made the worst case go from several seconds to around
10-20 ms, which is still bad, but by far not as bad.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1616>
Commit 03c69ed8 ("Do not go past size hints on resize") was meant to
ensure the size hints set by the client would be honored during resize,
as going past those values could cause the window to move on resize.
However, it did so by calling ensure_size_hints_satisfied() which works
with the frame rect rather than the client rect. As a result, the
minimum size enforced would end up being larger than expected with
client-side decorations.
Use meta_window_maybe_apply_size_hints() instead which automatically
adjusts for client size.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1542
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1594>
We will use a dedicated variable when transitioning to/from fullscreen state
and leave the previously used 'saved_rect' exclusively for transitioning
between floating and maximized state.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/801
On interactive resize, mutter calculates the difference in size based on
the pointer location and relies on window constraints to ensure the
minimum size is honored.
Wayland however does asynchronous window configuration, meaning that not
checking for size hints early enough may lead to the window moving as
the locations was initially computed on a size which will be invalidate
by the client eventually.
Make sure to respect the client size hint on update_resize() so that we
don't end up with a window moving unexpectedly when the client
eventually acked the configuration.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1495
Aligning windows manually with other windows has become less important
since the advent of tiling. This decreases the usefulness of edge
resistance, which in fact many users perceive as lag nowadays.
Account for that by limiting resistance to screen and monitor edges by
default, and only include windows when the control key is pressed.
https://bugzilla.gnome.org/show_bug.cgi?id=679609
Commit 033f0d11bf added a fallback in case the tile monitor wasn't
set before, but didn't actually check for a previously set value.
As a result, the "fallback" is not set unconditionally, which may
differ from the expected monitor: The tile monitor is determined
by the pointer position, while the window's monitor is the one
where the biggest part of the window resides on.
https://gitlab.gnome.org/GNOME/mutter/-/issues/1389
Allowing code from inside mutter to create a child process and
delegate on it some of its tasks is something very useful. This can
be done easily with the g_subprocess and g_subprocess_launcher classes
already available in GLib and GObject.
Unfortunately, although the child process can be a graphical program,
currently it is not possible for the inner code to identify the
windows created by the child in a secure manner (this is: being able
to ensure that a malicious program won't be able to trick the inner
code into thinking it is a child process launched by it).
Under X11 this is not a problem because any program has full control
over their windows, but under Wayland it is a different story: a
program can't neither force their window to be kept at the top (like a
docker program does) or at the bottom (like a program for desktop icons
does), nor hide it from the list of windows. This means that it is not
possible for a "classic", non-priviledged program, to fulfill these
tasks, and it can be done only from code inside mutter (like a
gnome-shell extension).
This is a non desirable situation, because an extension runs in the
same main loop than the whole desktop itself, which means that a
complex extension can need to do too much work inside the main loop,
and freeze the whole desktop for too much time. Also, it is important
to note that javascript doesn't have access to fork(), or threads,
which means that, at most, all the parallel computing that can do is
those available in the _async calls in GLib/GObject.
Also, having to create an extension for any priviledged graphical
element is an stopper for a lot of programmers who already know
GTK+ but doesn't know Clutter.
This patch wants to offer a solution to this problem, by offering a
new class that allows to launch a trusted child process from inside
mutter, and make it to use an specific UNIX socket to communicate
with the compositor. It also allows to check whether an specific
MetaWindow was created by one of this trusted child processes or not.
This allows to create extensions that launch a child process, and
when that process creates a window, the extension can confirm in a
secure way that the window really belongs to that process
launched by it, so it can give to that window "superpowers" like
being kept at the bottom of the desktop, not being listed in the
list of windows or shown in the Activities panel... Also, in future
versions, it could easily implement protocol extensions that only
could be used by these trusted child processes.
Several examples of the usefulness of this are that, with it, it
is possible to write programs that implements:
- desktop icons
- a dock
- a top or bottom bar
...
all in a secure manner, avoiding insecure programs to do the same.
In fact, even if the same code is launched manually, it won't have
those privileges, only the specific process launched from inside
mutter.
Since this is only needed under Wayland, it won't work under X11.
Fixes https://gitlab.gnome.org/GNOME/mutter/issues/741
Make the clutter_input_device_get_actor() API public and remove
clutter_input_device_get_pointer_actor() in favour of the new function.
This allows also getting the "pointer" actor for a given touch sequence,
not only for real pointer input devices like mice.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1275
Since PIDs are inherently insecure because they are reused after a
certain amount of processes was started, it's possible the client PID
was spoofed by the client.
So make sure users of the meta_window_get_pid() API are aware of those
issues and add a note to the documentation that the PID can not be
totally trusted.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1180
Since the PID of a window can't change as long as the window exists, we
can safely cache it after we got a valid PID once, so do that by adding
a new `window->client_pid` private property.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1180
The shell uses the PID of windows to map them to apps or to find out
which window/app triggered a dialog. It currently fails to do that in
some situations on Wayland, because meta_window_get_pid() only returns a
valid PID for x11 clients.
So use the client PID instead of the X11-exclusive _NET_WM_PID property
to find out the PID of the process that started the window. We can do
that by simply renaming the already existing
meta_window_get_client_pid() API to meta_window_get_pid() and moving
the old API providing the _NET_WM_PID to meta_window_get_netwm_pid().
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1180
When tiling, we want to set the tile monitor. To not have to do this
from the call site, make meta_window_tile() fall back to the current
monitor if nothing set it prior to the call.
This will make it more convenient for test cases to test tiling
behavior.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1171
Better to have the relevant object figure out whether it is a good
position to be unredirectable other than the actor, which should be
responsible for being composited.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/798
Currently we check whether a window is alive everytime it's focused.
This means that an application that doesn't respond to the check-alive
event during startup always showing the "application froze" dialog,
without the user ever trying to interact with it.
An example where this tends to to happen is with games, and for this
particular scenario, it's purely an annoyance, as I never tried to
interact with the game window in the first place, so I don't care that
it's not responding - it's loading.
To avoid these unnecessary particular "app-is-frozen" popups, remove the
alive check from the focus function, and instead move it back to the
"meta_window_activate_full()" call. To also trigger it slightly more
often, also add it to the path that triggers the window focus when a
user actively clicks on the window.
This means that we currently check whether a window is alive on:
* Any time the window is activated. This means e.g. alt-tab or
selecting the window in the overview.
* The user clicks on the window.
Note that the second only works for an already focused window on
Wayland, as on X11, we don't refocus it. This particular case isn't
changed with this commit, as we didn't call meta_window_focus() to begin
with here.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1182
This is so that cogl-trace.h can start using things from cogl-macros.h,
and so that it doesn't leak cogl-config.h into the world, while exposing
it to e.g. gnome-shell so that it can make use of it as well. There is
no practical reason why we shouldn't just include cogl-trace.h via
cogl.h as we do with everything else.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1059
Commit cda9579034 fixed a corner case when setting the initial workspace
state of transient windows, but it still missed a case:
should_be_on_all_workspaces() returns whether the window should be on all
workspaces according to its properties/placement, but it doesn't take
transient relations into account.
That means in case of nested transients, we can still fail the assert:
1. on-all-workspaces toplevel
2. should_be_on_all_workspaces() is TRUE for the first transient's parent,
as the window from (1) has on_all_workspaces_requested == TRUE
3. should_be_on_all_workspaces() is FALSE for the second transient's
parent, as the window from (2) is only on-all-workspace because
of its parent
We can fix this by either using the state from the root ancestor
instead of the direct transient parent, or by using the parent's
on_all_workspaces_state.
The latter is simpler, so go with that.
https://gitlab.gnome.org/GNOME/mutter/issues/1083
This commits adds support on the MetaWindow and constraints engine side
for asynchronously repositioning a window with a placement rule, either
due to environmental changes (e.g. parent moved) or explicitly done so
via `meta_window_update_placement_rule()`.
This is so far unused, as placement rules where this functionality is
triggered are not yet constructed by the xdg-shell implementation, and
no users of `meta_window_update_placement_rule()` exists yet.
To summarize, it works by making it possible to produce placement rules
with the parent rectangle a window should be placed against, while
creating a pending configuration that is not applied until acknowledged
by the client using the xdg-shell configure/ack_configure mechanisms.
An "temporary" constrain result is added to deal with situations
where the client window *must* move immediately even though it has not yet
acknowledged a new configuration that was sent. This happens for example
when the parent window is moved, causing the popup window to change its
relative position e.g. because it ended up partially off-screen. In this
situation, the temporary position corresponds to the result of the
movement of the parent, while the pending (asynchronously configured)
position is the relative one given the new constraining result.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/705
MetaGravity is an enum, where the values match the X11 macros used for
gravity, with the exception that `ForgetGravity` was renamed
`META_GRAVITY_NONE` to have less of a obscure name.
The motivation for this is to rely less on libX11 data types and macros
in generic code.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/705
A placement rule placed window positions itself relative to its parent,
thus converting between relative coordinates to absolute coordinates,
then back to relative coordinates implies unwanted restrictions for
example when the absolute coordinate should not be calculated againts
the current parent window position.
Deal with this by keeping track of the relative position all the way
from the constraining engine to the move-resize window implementation.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/705
To organize things a bit better, put the fields related to the placement
rule state in its own anonymous struct inside MetaWindow. While at it,
rename the somewhat oddly named variable that in practice means the
current relative window position.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/705
There are two surface roles owning a MetaWindow: MetaWaylandShellSurface
(basis of MetaWaylandXdgToplevel, MetaWaylandXdgPopup,
MetaWaylandWlShellSurface, etc), and MetaXwaylandSurface.
With these two role types, the MetaWindow has two different types of
life times. With MetaWaylandShellSurface, the window is owned and
managed by the role itself, while with MetaXwaylandSurface, the
MetaWindow is tied to the X11 window, while the Wayland surface and its
role plays more the role of the backing rendering surface.
Before, for historical reasons, MetaWindow was part of
MetaWaylandSurface, even though just some roles used it, and before
'wayland: Untie MetaWindowXwayland lifetime from the wl_surface' had
equivalent life times as well. But since that commit, the management
changed. To not have the same fied in MetaWaylandSurface being managed
in such drastically different ways, rearrange it so that the roles that
has a MetaWindow themself manages it in the way it is meant to; meaning
MetaWaylandShellSurface practically owns it, while with Xwayland, the
existance of a MetaWindow is tracked via X11.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/835
Increase the number of checks whether a window is still responsive and
ping windows on every call to `meta_window_focus()` instead of
`meta_window_activate_full()`. This ensures the window is also pinged in
case normal interaction like clicks on the window happen and a close
dialog will eventually get shown.
Related https://gitlab.gnome.org/GNOME/mutter/issues/395https://gitlab.gnome.org/GNOME/mutter/merge_requests/891
When an X11 window requests an initial workspace, we currently trust
it that the workspace actually exists. However dynamic workspaces
make this easy to get wrong for applications: They make it likely
for the number of workspaces to change between application starts,
and if the app blindly applies its saved state on startup, it will
trigger an assertion.
Make sure that we pass valid parameters to set_workspace_state(),
and simply let the workspace assignment fall through to the default
handling otherwise.
https://gitlab.gnome.org/GNOME/mutter/issues/1029
As we now call `meta_wayland_compositor_repick()` when the effects are
complete for Wayland surfaces, we can safely remove the Wayland specific
code to do the same from `meta_window_show()`.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1026
In Wayland, window configuration is asynchronous. Window geometry is
constrained, the constrained geometry is sent to the client, and the
client will adapt its surface and acknowledge the configuration. When
acknowledged, we shouldn't reconstrain again, as that may invalidate the
constraint calculated for the configured size.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/907
The intention of meta_window_wayland_move_resize() is to finish a
move-resize requested previously, e.g. by a state change, or a
interactive resize. Make the function name carry this intention, by
renaming it to meta_window_wayland_finish_move_resize().
https://gitlab.gnome.org/GNOME/mutter/merge_requests/907
While most of the code to compute a window's layer isn't explicitly
windowing backend specific, it is in practice: On wayland there are
no DESKTOP windows(*), docks(*) or groups.
Reflect that by introducing a calculate_layer() vfunc that computes
(and sets) a window's layer.
(*) they shall burn in hell, amen!
https://gitlab.gnome.org/GNOME/mutter/merge_requests/949
Most of the layer computation that the stack does actually depends
on the windowing backend, so we will move it to a vfunc.
However before we do that, split out the bit that will be shared.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/949
Add an assert that we don't have a MetaWindow::monitor pointer that
points to an old MetaLogicalMonitor. After this, and the other
monitors-changed callbacks have been called, the old MetaLogicalMonitor
will be destoryed, thus if we didn't update the pointer here, we'll
point to freed memory, and will eventually crash later on.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/929
Override-redirect windows have no workspace by default, and can't be parent
of a top-level window, so we must check that the parent window is not an
O-R one when setting the workspace state.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/895
Otherwise we'll end up trying to access the out of date state later.
Fixes the following test failure backtrace:
#0 _g_log_abort ()
#1 g_logv ()
#2 g_log ()
#3 meta_monitor_manager_get_logical_monitor_from_number ()
#4 meta_window_get_work_area_for_monitor ()
#5 meta_window_get_tile_area ()
#6 constrain_maximization ()
#7 do_all_constraints ()
#8 meta_window_constrain ()
#9 meta_window_move_resize_internal ()
#10 meta_window_tile ()
https://gitlab.gnome.org/GNOME/mutter/merge_requests/912
Add an adjust_fullscreen_monitor_rect virtual method to MetaWindowClass
and call this from setup_constraint_info() if the window is fullscreen.
This allows MetaWindowClass to adjust the monitor-rectangle used to size
the window when going fullscreen, which will be used in further commits
for a workaround related to fullscreen games under Xwayland.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/739
If window decoration is modified within a short period of time, mutter
sometimes starts processing the second request before the first
UnmapNotify event has been received. In this situation, it considers
that the window is not mapped and does not expect another UnmapNotify /
MapNotify event sequence to happen.
This adds a separate counter to keep track of the pending reparents. The
input focus is then restored when MapNotify event is received iff all
the expected pending ReparentNotify events have been received.
Signed-off-by: Rémi Bernon <rbernon@codeweavers.com>
https://gitlab.gnome.org/GNOME/mutter/merge_requests/657
When double clicking to un-maximize an X11 window under Wayland, there
is a race between X11 and Wayland protocols and the X11 XConfigureWindow
may be processed by Xwayland before the button press event is forwarded
via the Wayland protocol.
As a result, the second click may reach another X11 window placed right
underneath in the X11 stack.
Make sure we do not forward the button press event to Wayland if it was
handled by the frame UI.
https://gitlab.gnome.org/GNOME/mutter/issues/88
Commit 09bab98b1e tried to avoid several workspace changes while in
window construction, but it missed a case:
If we have a window on a secondary monitor with no workspaces enabled
(so it implicitly gets on_all_workspaces = TRUE without requesting it)
and trigger the creation of a second window that has the first as
transient-for, it would first try to set the first workspace than the
transient-for window and then fallback to all/current workspace.
After that commit we only try to set the same workspace than the
transient-for window, but it gets none as neither is on a single workspace,
nor did really request to be on all workspaces.
Fixes crashes when opening transient X11 dialogs in the secondary monitor.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/714
We first set the workspace to the transient-for parent's, and then
try to set on the current workspace. If both happen, we double the
work on adding/removing it from the workspace, and everything that
happens in result.
Should reduce some activity while typing on the Epiphany address
bar, as the animation results in a number of xdg_popup being created
and destroyed to handle the animation.
https://gitlab.gnome.org/GNOME/mutter/issues/556
As per commit 040de396b, we don't try to grab when shortcuts are inhibited,
However, this uses the focus window assuming that it is always set, while this
might not be the case in some scenarios (like when unsetting the focus before
requesting take-focus-window to acquire the input).
So allow the button grab even if the focus window is not set for the display
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/663https://gitlab.gnome.org/GNOME/mutter/merge_requests/668
On Wayland, if a client issues a inhibit-shortcut request, the Wayland
compositor will disable its own shortcuts.
We should also disable the default handler for the button grab modifier
so that button events with the window grab modifiers pressed are not
caught by the compositor but are forwarded to the client surface.
That also fixes the same issue with Xwayland applications issuing grabs,
as those end up being emulated like shortcut inhibition.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/642
When we're unfullscreening, we might be returning to a window state that
has its size either managed by constraints (tiled, maximized), or not
(floating). Lets just pass the configure size 0x0 when we're not using
constrained sizes (i.e. the window going from being fullscreen to not
maximized) and let the application decide how to size itself.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/638https://gitlab.gnome.org/GNOME/mutter/merge_requests/621
In all places (including src/wayland) we tap into meta_x11_display* focus
API, which then calls meta_display* API. This relation is backwards, so
rework input focus management so it's the other way around.
We now have high-level meta_display_(un)set_input_focus functions, which
perform the backend-independent maintenance, and calls into the X11
functions where relevant. These functions are what callers should use.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/420
We use a GtkIconTheme (thus icon-theme, thus xsettings, thus x11) just to
grab a "missing icon" icon to show in place. Relax this requirement that
surfaces for icon/mini-icon will be set, and just let it have NULL here.
It seems better to have the callers (presumably UI layers) aware of this
and set a proper icon by themselves, but AFAICS there is none in sight,
not even plain mutter seems to use MetaWindow::[mini-]icon. Probably
worth a future cleanup.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/420
We'd break the loop for moving attached windows at the first window,
meaning we'd only ever move a single attached dialogs or popup if it was
the first window in the list. This doesn't work out well when there are
multiple popups open, so don't break out of the loop at all until all
windows are potentially moved.
This fixes an issue in gtk4 where one or more non-grabbing popups would
end up unattached if there were more than one and the parent window was
moved.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/592
This function was added for historic reasons, before that we had GSlist's
free_full function.
Since this can be now easily implemented with a function call and an explicit
GDestroyFunc, while no known dependency uses it let's move to use
g_slist_free_func instead.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/57
When an application stops responding, the shell darkens its windows.
If a window from a not-responding application gets unmanaged
then the shell will currently throw an exception trying to retrieve
the now-dissociated window actor.
That leads to a "stuck window" ghost on screen and a traceback
in the log.
This commit addresses the problem by making sure the effect is cleaned
up before the actor is disocciated from its window.
https://gitlab.gnome.org/GNOME/mutter/issues/575
If a client maps a persistent popup with a placement rule, then resizes
the parent window so that the popup ends up outside of the parent,
unmanage the popup and log a warning about the client being buggy.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/496
When a parent window is moved, attached windows (attached modal dialogs
or popups) is moved with it. This is problematic when such a window
hasn't been shown yet (e.g. a popup that has been configured but not
shown), as it'll mean we try to constrain an empty window. Avoid this
issue by not trying to auto-move empty windows.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/496
As per commit 43633d6b, we mark an unmanaging window as not focusable, while
this is true, it might cause not resetting the current focused window when
unmanaging it causing a crash.
Also this wouldn't allow to check if a window can be focused when unmanaging it,
so let's revert the previous behavior.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/462
For various error and warning messages, mutter includes a description of
the window, and that description includes a snippet of the title of the
window. Those snippets find their way into system logs, which then means
they can potentially find their way into bug reports and similar. Remove
the window title information to eliminate this potential privacy issue.
Commit 25f416c13d added additional compilation warnings, including
-Werror=return-type. There are several places where this results
in build failures if `g_assert_not_reached()` is disabled at compile
time and the compiler misses a return value.
https://gitlab.gnome.org/GNOME/mutter/issues/447
It's a UI pattern that has been superseded by client-side decorations,
apps that used to set the hint have generally moved on to headerbars.
Given that and the limitation to server-side decorated X11 windows,
GTK4 removed the client-side API for setting the hint, it's time to
follow suite and retire the feature.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/221