Switch to the output naming logic used by the X server's modesetting
driver which, in particular, uses drmModeConnector's connector_type_id
instead of connector_id.
The kernel generates new connector_id's every time there are changes
which means we can't identify the same monitor on the same connector
after an hardware hotplug. Switching to connector_type_id fixes this.
https://bugzilla.gnome.org/show_bug.cgi?id=770338
We can only honor this properly in the MUTTER_STAGE_VIEWS=1 case. When using
the legacy view, software implemented transforms are only exposed if there is
only one output, as we can only transform the entire stage there.
https://bugzilla.gnome.org/show_bug.cgi?id=745079
The texture is only created if the view is transformed at the software level,
otherwise the texture is NULL, and rendering happens on the onscreen.
https://bugzilla.gnome.org/show_bug.cgi?id=745079
The offscreen is given through the ::back-buffer property, the ClutterStageView
will set up the the CoglPipeline used to render it back to the "onscreen"
framebuffer.
The pipeline can be altered through the setup_pipeline() vfunc, so ClutterStageView
implementations can alter the default behavior of blitting from offscreen to
onscreen with no transformations.
All getters of "the framebuffer" that were expecting to get an onscreen have
been updated to call the right clutter_stage_view_get_onscreen() function.
https://bugzilla.gnome.org/show_bug.cgi?id=745079
The call to _cogl_framebuffer_winsys_update_size() results in no-op here,
as the framebuffer has already the right size when rebuilding the views.
https://bugzilla.gnome.org/show_bug.cgi?id=745079
Those will need a separate treatment from the modes that we eventually
support through "software", so split those into a separate enum so we
can can do the right thing when applying the configuration.
Also, add a helper function that returns the transform that the software
fallbacks should perform, which should be "normal" if the rotation is
already handled via hw.
The function applying the configuration has been modified to always set
a HW rotation mode (even if normal), when we come to support SW rotation
modes, we'll be relying on a normal transformation, so it will be
necessary to have mixed HW/SW managed transforms.
https://bugzilla.gnome.org/show_bug.cgi?id=745079
The scale will have been set to 1 no matter what when initializing the
MetaOutput since it at the time didn't have an CRTC assigned to it.
Now, when we assign the CRTC to the output, we need to update the scale.
https://bugzilla.gnome.org/show_bug.cgi?id=769505
Support changing the mouse and trackball acceleration profile. This
makes it possible to for example disable pointer acceleration by
choosing the 'flat' profile.
This adds an optional dependency on gudev. Gudev is used by the X11
backend to detect whether a device is a mouse or not. Without gudev
support, the accel profile settings has have effect for mouse devices.
Trackball still uses the "strstr" approach, since udev doesn't support
tagging devices as trackball devices yet.
https://bugzilla.gnome.org/show_bug.cgi?id=769179
Add support for setting edge-scrolling separately from two-finger
scrolling. We now have 2 separate boolean settings for those, with the
Mouse panel in gnome-control-center allowing to set only one of those at
a time, but nothing precludes both being set in the configuration.
We need to handle:
- two-finger-scrolling-enabled and edge-scrolling-enabled settings both
being set.
- those 2 settings being change out-of-order
- two-finger-scrolling being set on a device that doesn't support it
- edge-scrolling-enabled on a device that doesn't support it
And the combinations of one touchpad supporting just one of edge
scrolling and two-finger scrolling and another vice-versa.
https://bugzilla.gnome.org/show_bug.cgi?id=768245
They are already effectively interchangeable so this should reduce
pointless casts.
Just like in GDK though, we need to keep the old definition for
instrospection to be able to include the struct's fields.
By creating a pending gbm/EGL surface pair, only setting it on
swap-buffers, we would draw onto a buffer on the old surface, then swap
the buffer from the new surface, causing the first frame after a
hot-plug always having no content.
This was in the past not very noticable since some non-deterministic but
frequent side effect in gnome-shell caused hot-plugging to always render
two new frames, but after "Introduce regional stage rendering", this
side effect did not occur as often, thus making it more visible.
This commit updates the current gbm/EGL surface pair before painting a
frame, so that when the frame is painted, the surface with the correct
size is used and the buffer from correct surface is swapped.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
CoglFrameInfo is a frame info container associated with a single
onscreen framebuffer. The clutter stage will eventually support drawing
a stage frame with multiple onscreen framebuffers, thus needs its own
frame info container.
This patch introduces a new stage signal 'presented' and a accompaning
ClutterFrameInfo and adapts the stage windows and past onscreen frame
callbacks users to use the signal and new info container.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
Call a CoglContext "cogl_context", CoglDisplay "cogl_display" and
CoglRenderer "cogl_renderer" so that they won't be confused with
ClutterContext, MetaDisplay and MetaRenderer etc.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
Make the cogl vfunc functions have names that are globally
discoverable. Calling the same function in every backend the same name
causes code navigation tools to not function properly. Rename the
affected functions to closer correspond to the style mutter uses.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
Add support for drawing a stage using multiple framebuffers each making
up one part of the stage. This works by the stage backend
(ClutterStageWindow) providing a list of views which will be for
splitting up the stage in different regions.
A view layout, for now, is a set of rectangles. The stage window (i.e.
stage "backend" will use this information when drawing a frame, using
one framebuffer for each view. The scene graph is adapted to explictly
take a view when painting the stage. It will use this view, its
assigned framebuffer and layout to offset and clip the drawing
accordingly.
This effectively removes any notion of "stage framebuffer", since each
stage now may consist of multiple framebuffers. Therefore, API
involving this has been deprecated and made no-ops; namely
clutter_stage_ensure_context(). Callers are now assumed to either
always use a framebuffer reference explicitly, or push/pop the
framebuffer of a given view where the code has not yet changed to use
the explicit-buffer-using cogl API.
Currently only the nested X11 backend supports this mode fully, and the
per view framebuffers are all offscreen. Upon frame completion, it'll
blit each view's framebuffer onto the onscreen framebuffer before
swapping.
Other backends (X11 CM and native/KMS) are adapted to manage a
full-stage view. The X11 CM backend will continue to use this method,
while the native/KMS backend will be adopted to use multiple view
drawing.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
In preperation for having allowing drawing onto multiple onscreen
framebuffers, move the onscreen framebuffer handling to the
corresponding winsys dependent backends.
Currently the onscreen framebuffer is still accessed, but, as can seen
by the usage of "legacy" in the accessor name, it should be considered
the legacy method. Eventually only the X11 Compositing Manager backend
will make use of the legacy single onscreen framebuffer API.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
Split the stage window implementations into three separate objects: one
for X11 as a compositing manager, one for X11 running as a nested
Wayland compositor, and one for running with the native backend.
The new stage window implementations are only thin shells; this is in
preparation for making the stage windows behave more differently.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
The stage resizing was placed in the generic backend, which was only
run on certain configurations (when running nested or using the native
backend). This commits makes the resizing more explicit thus more
obvious.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
This commit completes the move of monitor logic to the monitor
mangager. The renderer now only deals with framebuffers, asking the
monitor manager to do the crtc flip tracking.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
Let MetaMonitorManagerKms manage KMS modes. This lets us pass less
state to MetaRendererNative. Instead let MetaMonitorManager tell the
monitor manager when it should set the mode and with what framebuffer.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
Absorb the CoglRendererKMS struct into MetaRendererNative. The gbm
device initialization is moved earlier so that the renderer fails to
initialize if the gbm device creation failed.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
Move the KMS interaction from cogl into mutter, where most of the other
KMS interaction already takes place. This also removes dead code which
were only excercised when non-mutter callers used the cogl KMS backend.
The cogl KMS API was updated to pass via MetaRendererNative instead of
via the different cogl objects.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
Instead of passing around the KMS file descriptor via clutter to cogl,
just make our own clutter backend create the cogl renderer and set the
KSM fd.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
MetaRenderer is meant to be the object responsible for rendering the
scene graph. It will contain the logic related to the cogl winsys
backend, the clutter backend, and the clutter stage window.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
Introduce two new clutter backends: MetaClutterBackendX11 and
MetaClutterBackendNative. They are so far only wrap ClutterBackendX11
and ClutterBackendEglNative respectively, but the aim is to move things
from the original clutter backends when needed.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
Sadly, GLib's autoptr cleanup macros cannot be detected by the C
pre-processor, because they generate a function. This means that we are
forced to bump up the dependency on GLib 2.49, in order to build against
a newer version of gdbus-codegen.
Starting from GLib 2.49, the gdbus-codegen tool automatically generates
the auto cleanup symbols for the GDBus proxy and skeleton interfaces.
Since we don't depend on a specific version of GLib we need to
conditionally generate the auto cleanup symbols in case an older version
of gdbus-codegen is used when building Mutter.
This commit unbreaks the build under GNOME Continuous, which has been
failing with:
usr/include/glib-2.0/glib/gmacros.h:415:43: error: redefinition of 'glib_autoptr_cleanup_Login1Session'
#define _GLIB_AUTOPTR_FUNC_NAME(TypeName) glib_autoptr_cleanup_##TypeName
^
[...]
/usr/include/glib-2.0/glib/gmacros.h:415:43: note: previous definition of 'glib_autoptr_cleanup_Login1Session' was here
./meta-dbus-login1.h:82:1: note: in expansion of macro 'G_DEFINE_AUTOPTR_CLEANUP_FUNC'
G_DEFINE_AUTOPTR_CLEANUP_FUNC (Login1Session, g_object_unref)
^
If we rely on getting back an input event with the warped pointer
coordinates, we might draw a frame with the old coordinates if we warp
during the paint phase. Avoid that by moving the cursor immediately.
https://bugzilla.gnome.org/show_bug.cgi?id=744104
The wp_pointer_constraints protocol is a protocol which enables clients
to manipulate the behavior of the pointer cursor associated with a seat.
Currently available constraints are locking the pointer to a static
position, and confining the pointer to a given region.
Currently locking is fully implemented, and confining is implemented for
rectangular confinement regions.
What else is lacking is less troublesome semantics for enabling the lock
or confinement; currently the only requirement implemented is that the
window that appears focused is the one that may aquire the lock.
This means that a pointer could be 'stolen' by creating a new window that
receives active focus, or when using focus-follows-mouse, a pointer
passes a window that has requested a lock. This semantics can be changed
and the protocol itself allows any semantics as seems fit.
https://bugzilla.gnome.org/show_bug.cgi?id=744104
In order to reuse some vector math for pointer confinement, move out
those parts to its own file, introducing the types old types
"MetaVector2" and "MetaLine2" outside of meta-barrier-native.c, as well
as introducing MetaBorder which is a line, with a blocking direction.
https://bugzilla.gnome.org/show_bug.cgi?id=744104
Add support for sending relative pointer motion deltas to clients who
request such events by creating wp_relative_pointer objects via
wp_relative_pointer_manager.
This currently implements the unstable version 1 from wayland-protocols.
https://bugzilla.gnome.org/show_bug.cgi?id=744104