A failing allocation is non-fatal here, however if it fails later in a
lazy allocation triggered by `cogl_framebuffer_create_timestamp_query()`
we end up crashing. Thus force the allocation early, like we already do
in other places.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3004>
While it's obviously good to trap possible errors from X calls, we are
mixing the Clutter error trap with the MetaX11Display one for these
calls.
This may result in situations where a X call within a Clutter error
trap fails, but it's actually handled in these sections using the
MetaX11Display error trap. This one will consider the serial out
of the "handled" parts and raise an error.
It is better to stay consistent here, and use the same error traps
than the rest of the X11 backend.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2796
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3002>
Since c390f70edc ("backend: Set up and use ownership chains")
the type of the ClutterInputDevice object's "meta-input-settings-xdevice"
data is `DeviceHandle`, but that commit failed to change the one place
where the object data is queried. As a consequence, that part still
considers it to be an `XDevice`, so everything that uses the return
value of `device_ensure_xdevice()` works with invalid data. Furthermore,
`device_handle_free()` incorrectly uses the `user_data` as the argument
for `XCloseDevice()` leading to a double free.
Fixes: c390f70edc ("backend: Set up and use ownership chains")
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2995>
Otherwise drivers would be free to alter the buffer content. While no
driver is known to do so, it's probably good to make things explicit.
See also `import_simple_dmabuf()` in Weston.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2990>
The DMA buffer paths vs MemFd paths differ slightly in when content is
recorded. This was in some places done by trying to record but bail if
the dequeued buffer had the wrong type. This is problematic for two
reasons: we'd update the timestamp even if we refused to record, making
the follow-up attempt fail, and we'd dequeue and queue buffers that
didn't get any content, meaning the receiving end would see empty
buffers potentially with only cursor updates.
Fix this by keeping track if a stream is DMA buffer able or not, and
don't attempt to record at all in the places we would previously require
DMA buffers. This avoids both issues: we don't dequeue/queue pw_buffers
that we refuse to record to, and we won't update the recorded timestamp
when we didn't intend to record to begin with.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2783
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2987>
Hides libdisplay-info under a build time default-off flag,
provides provision to parse essential edid parameters with
APIs provided by libdisplay-info. This implementaion increases
readibility, avoids code duplication and decreases complexity
of edid parsing.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2642>
Just like the HDR Metadata property the Colorspace property values only
indicate that the display driver supports signaling certain colorimetry.
It does not indidcate that the sink actually supports processing the
colorimetry. For this we have to look up the colorimetry support in the
EDID.
The default colorimetry is always supported. If we want bt.2020 we might
get either the RGB or YCC variant even if we ask for the RGB variant but
there is nothing we can do about it so let's just pretend it's a driver
issue.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2919>
This will be used to extract the resolution and refresh rate from
strings like "1920x1080@60.0" or "1280x720". This aims to replace the
use of the locale dependent sscanf() function.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2902>
Otherwise we'll have a cursor sprite backed by a surface that no longer
exist. This usually doesn't happen, but can happen in rare situations
related to pointer capability changes Wayland client cursor changes and
hotplugs.
Fixes the following crash:
#0 meta_wayland_buffer_get_resource() at ../src/wayland/meta-wayland-buffer.c:128
#1 realize_cursor_sprite_from_wl_buffer_for_gpu() at ../src/backends/native/meta-cursor-renderer-native.c:1649
#2 realize_cursor_sprite_for_gpu() at ../src/backends/native/meta-cursor-renderer-native.c:1869
#3 realize_cursor_sprite() at ../src/backends/native/meta-cursor-renderer-native.c:1887
#4 meta_cursor_renderer_native_update_cursor() at ../src/backends/native/meta-cursor-renderer-native.c:1100
#5 meta_cursor_renderer_update_cursor() at ../src/backends/meta-cursor-renderer.c:414
#6 meta_cursor_renderer_force_update() at ../src/backends/meta-cursor-renderer.c:449
#7 update_cursors() at ../src/backends/meta-backend.c:328
#8 meta_backend_monitors_changed() at ../src/backends/meta-backend.c:338
#9 meta_monitor_manager_notify_monitors_changed() at ../src/backends/meta-monitor-manager.c:3590
#10 meta_monitor_manager_rebuild() at ../src/backends/meta-monitor-manager.c:3678
#11 meta_monitor_manager_native_apply_monitors_config() at ../src/backends/native/meta-monitor-manager-native.c:343
#12 meta_monitor_manager_apply_monitors_config() at ../src/backends/meta-monitor-manager.c:706
#13 meta_monitor_manager_ensure_configured() at ../src/backends/meta-monitor-manager.c:779
#14 meta_monitor_manager_reconfigure() at ../src/backends/meta-monitor-manager.c:3738
#15 meta_monitor_manager_reload() at ../src/backends/meta-monitor-manager.c:3745
or the following on gnome-43:
#0 meta_wayland_surface_get_buffer at ../src/wayland/meta-wayland-surface.c:441
#1 meta_cursor_sprite_wayland_get_buffer at ../src/wayland/meta-cursor-sprite-wayland.c:83
#2 realize_cursor_sprite_from_wl_buffer_for_gpu at ../src/backends/native/meta-cursor-renderer-native.c:1612
#3 realize_cursor_sprite_for_gpu at ../src/backends/native/meta-cursor-renderer-native.c:1836
#4 realize_cursor_sprite at ../src/backends/native/meta-cursor-renderer-native.c:1854
#5 meta_cursor_renderer_native_update_cursor at ../src/backends/native/meta-cursor-renderer-native.c:1087
#6 meta_cursor_renderer_update_cursor at ../src/backends/meta-cursor-renderer.c:413
#7 meta_cursor_renderer_force_update at ../src/backends/meta-cursor-renderer.c:448
#8 update_cursors at ../src/backends/meta-backend.c:344
#9 meta_backend_monitors_changed at ../src/backends/meta-backend.c:354
Related: https://bugzilla.redhat.com/show_bug.cgi?id=2185113
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2968>
Pass the timestamp of the frame as the target timestamp of the
record. This makes the rudimentary frame throttling mechanism
inside MetaScreenCastStreamSrc work with the timing variability
that dynamic dispatch times introduced.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2804>
Instead of always, unconditionally scheduling an idle callback for
frame recording, try to record a DMA-BUF only frame, and only if
that's not possible, schedule the idle callback.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2804>
When a stream source subclass asks for a DMA-BUF only frame record,
it is legitimate to return FALSE in do_record_frame() - meaning that
a frame was not recorded - but not return an error - meaning nothing
actually failed.
This avoids spamming the journal with warnings on a legitimate case.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2804>
Add meta_screen_cast_stream_src_maybe_record_frame_with_timestamp()
which operates on arbitrary timestamps; and make the current function
meta_screen_cast_stream_src_maybe_record_frame() just call into the
new variant, passing g_get_monotonic_time() as the timestamp.
This will be useful later we start using the target timestamp of the
frame for screencasting.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2804>
This change will export the damaged regions (when available) out
to the pipewire client. This change is currently specific to
virtual streams only (where I was able to test the change) and
maintains the current behavior for other screencast stream types.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2775>
This change allows clipped redraws for offscreen. The net
effect of this change is to preserve the original redraw clip when
possible (rather than overwriting it with the full view redraw) in
the paint context.
This eventually helps in retrieving the fine grained updated regions of
the frame since last redraw and sending it to the pipewire client
(as shown in a subsquent CL).
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2775>
Returning FALSE does not indicate an error, but a valid backlight
value of 0. Consumers expect a negative value to indicate no
backlight support, so return -1 in case of error, just like we
already do for invalid values.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2947>
The unknown color space's only purpose is to signal that the current KMS
state has a unknown color space set. It is not one of the color spaces
that can be set. We already only try to set a color space if the default
color space is supported so we should use the default color space as a
fallback instead of the unknown color space.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2693
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2915>
We might get told to restore the old monitor configuration by the
monitor configuration prompt, in case the user pressed "revert" or
equivalent. This might be in response to a button press, and those
happen during frame clock dispatch. If we would restore an old
configuration during dispatch, it means we would reconfigure the
monitors including their stage views while dispatching, which means we'd
destroy the frame clock while it's dispatching.
Doing that causes problems, as the frame clock isn't expecting to be
destroyed mid-function. Specifically,
We'd enter
clutter_frame_clock_dispatch (clutter-frame-clock.c:811)
frame_clock_source_dispatch (clutter-frame-clock.c:839)
g_main_dispatch (gmain.c:3454)
g_main_context_dispatch (gmain.c:4172)
g_main_context_iterate.constprop.0 (gmain.c:4248)
g_main_loop_run (gmain.c:4448)
meta_context_run_main_loop (meta-context.c:482)
main (main.c:663)
which would first call
_clutter_process_event (clutter-main.c:920)
_clutter_stage_process_queued_events (clutter-stage.c:757)
handle_frame_clock_before_frame (clutter-stage-view.c:1150)
which would emit e.g. a button event all the way to a button press
handler, which would e.g. deny the new configuration:
restore_previous_config (meta-monitor-manager.c:1931)
confirm_configuration (meta-monitor-manager.c:2866)
meta_monitor_manager_confirm_configuration (meta-monitor-manager.c:2880)
meta_plugin_complete_display_change (meta-plugin.c:172)
That would then regenerate the monitor configuration and stage view
layout, which would destroy the old stage view and frame clock.
meta_stage_native_rebuild_views (meta-stage-native.c:68)
meta_backend_native_update_screen_size (meta-backend-native.c:457)
meta_backend_sync_screen_size (meta-backend.c:266)
meta_backend_monitors_changed (meta-backend.c:337)
meta_monitor_manager_notify_monitors_changed (meta-monitor-manager.c:3595)
meta_monitor_manager_rebuild (meta-monitor-manager.c:3683)
meta_monitor_manager_native_apply_monitors_config (meta-monitor-manager-native.c:343)
meta_monitor_manager_apply_monitors_config (meta-monitor-manager.c:704)
After returning back to the original clutter_frame_clock_dispatch()
frame, various state in the frame clock will be gone and we'd crash.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2901>
We have the drm/InfoFrame encoding and our MetaOutputHdrMetadata
encoding. Check that we can correctly convert between each other by
doing a encode/decode and decode/encode roundtrip and then checking for
equality.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2879>
The existence of the KMS property just means that we can send an
InfoFrame but we also have to make sure the sink actually supports the
metadata type 1 and the selected transfer function.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2879>
Allows to prepare KMS updates to set the color space and HDR Static
Metadata on the output.
For some reason we need ALLOW_MODESET on commits which change the HDR
Static Metadata InfoFrame on AMDGPU. There is no technical reason why
one needs to mode set to send an InfoFrame and the driver should just
manage without ALLOW_MODESET. Until this is resolved in the kernel we
just prepare KMS updates which might mode set.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2879>
The HDR Static Metadata InfoFrame contents are described in CTA-861.3
and the kernel maintains a representation of that in `struct
hdr_metadata_infoframe` in `include/uapi/drm/drm_mode.h`.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2879>
The Colorspace property informs the display about the colorimetry of the
content. Only variants supported by the sink are exposed in the
property. The strings representing the color spaces are undocumented but
can be found in the `hdmi_colorspaces` list in
`drivers/gpu/drm/drm_connector.c` in the Linux kernel (v 6.2).
The HDR_OUTPUT_METADATA property is a blob with the InfoFrame content.
We have to query support for the different values in the struct from the
EDID/DisplayID ourselfs.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2879>
This adds a new 'experimental-hdr' string property to the MonitorManager
which can be changed from looking glass.
Currently when the string equals 'on', HDR (PQ, Rec2020) will be enabled
on all monitors which support it. In the future support for more
transfer functions and color spaces as well as HDR metadata can be
added.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2879>
The color space and HDR metadata are eventually sent as metadata to the
display. The color space informs the display of the colorimetry of the
frames we produce, the HDR metadata informs the display of the transfer
function and additional mastering display colorimetry and luminance to
guide tone and gamut mapping.
The only color spaces we support right now are the default color space
and Rec bt.2020 which is typically used for HDR content. Other supported
color spaces can be added when needed.
The default color space corresponds to whatever colorimetry the display
has when no further changes are made to the calibration of the display.
The colorimetry is communicated to sources via EDID/DisplayID.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2879>
We relied on them being valid longer to keep track of used GPUs. If we
don't have the CRTC (or output) we don't have a way to fetch the pointer
to the MetaGpu that drives the associated monitor.
This avoids a crash when trying to fetch said pointer from what would be
the NULL MetaCrtc pointer.
Fixes: 08593ea872 ("onscreen/native: Hold ref to the output and CRTC until detached")
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2667
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2887>
When an onscreen is "attached" it means it has an active CRTC and output
it interacts with, e.g. listens to configuration changes to update gamma
and privacy screen state.
MetaOutput and MetaCrtc are rather short lived objects meaning they are
disposed of and regenerated each time the compositor reloads monitor
resources, and while MetaOutput are indirectly kept alive due to the
MetaMonitor holding on to them during reloading, the same does not apply
to MetaCrtc, so to avoid trying to disconnect our signals from
disappeared outputs and CRTCs when we dispatch, hold our own references
to these objects.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2665
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2885>
On exit, explicitly detach the onscreens during disposal. This means no
functional changes, but allows for doing more cleanup on detach that
doesn't need to be repeated on disposal.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2885>
As implemented in colord 1.4.6, cd_icc_load_handle() has three possible
results:
1. success, taking ownership of the profile;
2. failure because cmsGetProfileContextID returns NULL, *not* taking
ownership of the profile;
3. failure in cd_icc_load(), taking ownership of the profile.
The previous commit ensures that we are not in case 2.
In case 3 where cd_icc_load() fails, ownership was already given to
the colord CdIcc object, so it will be freed when the g_autoptr unrefs
the CdIcc, and we must not free it again: that would be a double-free,
potentially resulting in memory corruption.
Resolves: https://gitlab.gnome.org/GNOME/mutter/-/issues/2659
Signed-off-by: Simon McVittie <smcv@debian.org>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2877>
We want to avoid using too high scales too easily, which started to
happen 2f1dd049bf ("monitor-manager: Rework default scale factor
selection"). Instead of using the closest non-fractional scale, which
effectively is what we'd do, only round upwards if we're closer than
0.25 (25%).
Since there are some wiggle room for scales to make the logical
resolution on the integer pixel grid, make sure to compensate. This
compensation is done by adding an extra 0.2 to scale difference.
For example the following fractional scales will get these corresponding
integer scales:
* 1.25 -> 1.0
* 1.5 -> 1.0
* 1.75 -> 2.0
* 2.0 -> 2.0
* 2.50 -> 2.0
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2880>
Instead of testing headless start using the dummy backend, do so with
the real native backend, and use the drm-mock library instead to emulate
monitors being disconnected at startup.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2821>
As part of https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/525
(introduction of transactional KMS API), the logic determining whether a
GPU can have outputs was changed from whether any connectors existed to
whether any connected connectors existed. That effectively meant that we
wouldn't attempt to start at all if there were no monitors connected
while starting up.
This was unintentional, so lets revert back the expected behavior.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2821>
In order to make things more and more asynchronus and to each time we
paint be an isolated event, that can be potentially be applied
individually or together with other updates, make it so that each time
we draw, we use the transient MetaFrameNative (ClutterFrame) instance to
carry a KMS update for us.
For this to work, we also need to restructure how we apply mode sets.
Previously we'd amend the same KMS update each frame during mode set,
then after the last CRTC was composited, we'd apply the update that
contained updates for all CRTC.
Now each CRTC has its own KMS update, and instead we put them in a per
device table, and whenever we finished painting, we'll merge the new
update into any existing one, and then finally once all CRTCs have been
composited, we'll apply an update that contains all the mode sets for all
relevant CRTCs on a device.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2855>
MetaRendererViewNative is a MetaRendererView which contains logic
specific to views of the native backend. It will be used by following
commits.
In the future, per-view logic from MetaRendererNative can be moved to
MetaRendererViewNative where it makes more sense to have it.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2855>
Instead of using the "discarded" page flip callback when the
"discarding" happened during actual immediate processing, communicate
the same via the KMS update feedback.
The "discarded" page flip callback is instead used only for when a
posted page flip is discarded. In the atomic backend, this only happens
on shutdown, while in the simple backend, this also happens when a
asynchronous retry sequence eventually is abandoned.
This allows further improvements making KMS handling fully async.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2854>
At first it was called seal(), but then updates could be amended after
being posted, given a flag. That flag has been removed, so we can go
back to sealing, since it's once again acts more as a seal.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2854>
We test direct client buffer scanout using a TEST_ONLY commit on atomic,
and with various conditions in non-atomic, but if we end up failing to
actually commit despite this, handle the fallout asynchronously. What
this means is that we'll reschedule a new frame immediately.
For this to work, the same scanout buffer needs to be avoided for the
same CRTC. This is done by using the newly added signal on the
CoglScanout object to let the MetaWaylandBuffer object mark the current
buffer as non-working for the onsrceen that it failed on. This allows to
re-try buffers on the same onscreen when new ones are attached.
This queues a full damage, since we consumed the qeued redraw rect. The
redraw rect wasn't lost - it was accumulated to make sure the whole
primary plane was redrawed according to the damage region, whenever we
would end up no longer doing direct scanout, but this accumulation only
works when we're not intentionally stopping to scanout. For now, lets
just damage the whole view, it's just an graceful fallback in response
to an unexpected error anyway.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2854>
If we get a "ready" page flip feedback, it means the page flip was
symbolic, i.e. not real, e.g. as a result of an update that didn't
change the state of the primary plane. Warn if there is a "next fb"
meaning we expected to have a new buffer that we flipped to.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2854>
This is intended to be used only for plane assignment, and CRTC like
changes, so that one can e.g. change a cursor plane on a pending update
that changes the primary plane, before it has been committed to KMS.
The kms-updates test overrides the get-state function MetaKmsCrtc. This
is needd to not have the update mechanism not clamp the gamma size to 0,
as vkms reports the gamma length 0. By pretending it's 3, we can test a
simple and small gamma lut is merged correctly when merging updates.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2854>
Screen-casted windows need to be considered visible in various situations
but existing APIs such as `clutter_actor_is_effectively_on_stage_view()`
don't do so. Add new API that allows checking if a surface belongs to a
screen-casted window for the respective cases.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2789>
From the scale factors available to it, Mutter will now try to select
the scale factor that makes the UI's size as close as possible to the
size it would be, w/o scaling, on a display at 135 PPI (for mobile
displays) or at 110 PPI (for stationary displays)
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2653>
The pointer to the manager, the peer name and the ID are things that are
always metadata related to a session, so make them properties on the
interface instead of duplicating them. The implementations still need to
keep track of them, but their existance is shared.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2713>
This class is intended to be used as a base class for D-bus interface
implementations that deal with "session" objects, i.e. a D-Bus object
representing a certain session of some kind, e.g. a screen cast session.
It handles things such as hooking up to the D-Bus client watcher,
generates IDs, handles shutdown procedures.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2713>
It's currently not set by anything, and will only be used by
non-abstract implementations of a future D-Bus interface session
manager. When interface implementations gets ported to this new type,
their MetaDbusSession implementations will set this vfunc.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2713>
This means the MetaDbusSession interface takes a more active role
instead of being something that more or less sends signals to the
interface implementor. This will allow better control when using
MetaDbusSession to manage these sessions, instead of their non-abstract
variants.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2713>
Allows for creating LUTs at some fixed size which maintains enough
precision for concatenating or otherwise manipulating the LUT without
having to care about the precision of the hardware.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2861>
If the device supports the atomic API the property based API is used to
write gamma updates and the legacy API is used in the non-atomic case.
The current state is read from the legacy API always though which can be
different from the property API. This commit always uses the correct API
to update the state.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2861>
With detach meaning having the onscreen stop listening on configuration
changes on the corresponding backing mode setting objects. We need to do
this as there is a time between rebuilding the views, and that the new
mode sets are called, where the old onscreen is kept alive, but the
stage view is gone. At this point in time, if privacy screen or gamma
configuration changes, e.g. by the night light temperature changing, the
onscreen would attempt to schedule an update on the now gone stage view.
This commit also renames the "keep onscreen alive" to "detached
onscreens" to more clearly communicate that it's detached onscreens from
their corresponding mode setting objects.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2621
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2863>
For the coordinates of pointers or stylii, we translate the ones we store
using the viewport matrix already. For touch events otoh, we store coords
untranslated and translate them later only for event emission.
Let's be consistent here and store the coordinates of touch events
translated, just like we do for pointer events.
This fixes touch window dragging on rotated monitors. MetaWindowDrag calls
clutter_seat_query_state(), which uses those stored coordinates. So in case
of a touch sequence the coords returned by query_state() would be
untranslated.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2859>
Streams are generally recoverable by the client and errors may happen
e.g. on negotiation failures. Right now we close the stream and
corresponding session, which is neither necessary nor expected by
clients.
Just disable the stream instead and let clients handle things as they
seem fit. This allows clients to e.g. try several Gstreamer pipelines
with limited caps on a single stream.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2850>
Doing it in dispose means the backend is actively tearing down itself,
meaning various components might or might not be there, depending on how
the tearing down is implemented. Make things a bit more robust by doing
any work that might rely on the backend being there before shutdown is
done in response to the 'prepare-shutdown' signal being emitted by the
backend.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2853>
The first monitor in stacking tests is the primary monitor but that
doesn't have to stay this way forever. Instead of special casing the
name "primary" to refer to whatever monitor happens to be the primary
monitor, we add an `assert_primary_monitor` command to verify that the
monitor that should be the primary monitor actually is.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2748>
The previous logic tried to keep the position of the top left corner of
the window relative to the top left corner of the monitor. This allowed
the window to move out of the target monitor. This change keeps the
proportions of the distance between the window and the monitor borders
instead if possible. Otherwise it keeps the relative position of the
center of the window clamped to [0,1] to make sure the window lands on
the right output.
This also slightly changes what monitor is considered to be on: the
monitor which contains the center of the window and, if the center is on
no monitor, the monitor wich overlaps the most with the window.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2591>
So we can remove the additional `next_fb` and `current_fb` pointers from
`MetaOnscreenNativeSecondaryGpuState`.
Some non-scanout buffers also need to be held in the case of GL blitting
which completes in the background. Those are referenced from the scanout
buffers themselves to ensure the source buffers live just as long.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2087>
As with GAMMA_LUT, track whether privacy screen state has been pushed to
KMS in the onscreen. This leaves MetaOutput and MetaCrtc to be about
configuration, and not application.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2814>
As with CRTC GAMMA_LUT, we're moving towards making the entity managing
KMS updates aware if there are any changes to be made, and whether KMS
updates are actually needed or not, and for privacy screen changes, this
means we need to communicate whether the privacy screen state is valid
or not. This allows the caller to create any needed MetaKmsUpdate.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2814>
We're moving towards making the entity managing KMS updates aware if
there are any changes to be made, and whether KMS updates are actually
needed or not, and for GAMMA_LUT changes, this means we need to
communicate whether the GAMMA_LUT state is valid or not. This allows the
caller to create any needed MetaKmsUpdate.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2814>
When the pointer crosses monitors, we account for a single motion event
resulting in the pointer moving across more than 2 monitors, in order
to correctly account each monitor scale and the distance traversed
across each monitor in the resulting relative motion vector.
However, memory on the direction is kept short, each iteration to
find the target view just remembers the direction it came from. This
brings a pathological case with 4 monitors with the same resolution
in a 2x2 grid, and a motion vector that crosses monitors at the
intersection of all 4 in a perfect diagonal. (Say, monitors are
all 1920x1080 and pointer moves from 1920,1080 to 1919,1079).
In that case, the intersection point at the crossing between 4
monitors (say, 1920,1080) will be considered to intersect with 2
edges of each view. Since there is always at least 2 directions to
try, the loop will always find the direction other than the one
it came from, and as a result endlessly jump across all 4 possible
choices.
In order to fix this, consider only the global v/h directions,
we already know if the pointer moves left/right or up/down, so
only consider those directions to jump across monitors.
For the case at hand, this will result in three monitors visited,
(either bottomright/bottomleft/topleft, or bottomright/topright/topleft)
with a total distance of 0,0 in the middle one, effectively
resulting in a correct diagonal motion.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2598
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2803>
Refactor code so that variables don't depend the on motion line
content, but the other way around. This makes it clearer what each
vector means.
This has no functional changes.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2803>
That means before-update, prepare-paint, before-paint, paint-view, after-paint,
after-update. While yet to be used, it will be used as a transient frame
book keeping object, to maintain object and state that is only valid
during a frame dispatch.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2795>
Writing to fields (in this case the MetaColorDevice::pending_state) in
response to an asynchronous operation that was cancelled means we'll
write to an arbitrary memory location, potentially causing segmentation
faults or memory corruption.
Avoid these segfaults or memory corruption by only updating state if we
weren't cancelled. Also avoid trying to dereference the device pointer
if we're cancelled.
The memory corruption due to this has been causing test flakyness in the
monitor unit tests due, which should now hopefully be fixed.
Fixes: 19837796fe
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2794>
Recent versions of Xwayland can allow or disallow X11 clients from
different endianess to connect.
Add a setting to configure this feature from mutter, who spawns
Xwayland.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2785>
Commit 4e0ffba5c attempted to fix initialization of keyboard a11y,
but mousekeys do attempt to create a virtual input device at a
time that it is too early to try to create one.
Defer this operation until keyboard devices are added, so that
we are ensured to already have the seat input thread set up.
Fixes: 4e0ffba5c - backends/native: Initialize keyboard a11y on startup
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2778>
Commit bf84b24 created meta-enums.h but it's pretty empty so far, the
vast majority of enum definitions is still in common.h.
Move the Meta enum definitions to meta-enums.h as one would expect them
to be found.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2467>