Previously enabling and disabling textures was done whatever the
backend in cogl-pipeline-opengl. However enabling and disabling
texture targets only has any meaning if no fragment shaders are being
used so this patch moves the code to cogl-pipeline-fragend-fixed.
The GLES2 wrapper has also been changed to ignore enabledness when
deciding whether to update texture coordinate attribute pointers.
The GLES2 wrapper no longer needs to generate any fragment shader
state because the GLSL pipeline backend will always give the wrapper a
custom fragment shader. This simplifies a lot of the state comparison
done by the wrapper. The fog generation is also removed even though
it's actually part of the vertex shader because only the fixed
function pipeline backend actually calls the fog functions so it would
be disabled when using any of the other backends anyway. We can fix
this when the two shader backends also start generating vertex
shaders.
We now prepend a set of defines to any given GLSL shader so that we can
define builtin uniforms/attributes within the "cogl" namespace that we
can use to provide compatibility across a range of the earlier versions
of GLSL.
This updates test-cogl-shader-glsl.c and test-shader.c so they no longer
needs to special case GLES vs GL when splicing together its shaders as
well as the blur, colorize and desaturate effects.
To get a feel for the new, portable uniform/attribute names here are the
defines for OpenGL vertex shaders:
#define cogl_position_in gl_Vertex
#define cogl_color_in gl_Color
#define cogl_tex_coord_in gl_MultiTexCoord0
#define cogl_tex_coord0_in gl_MultiTexCoord0
#define cogl_tex_coord1_in gl_MultiTexCoord1
#define cogl_tex_coord2_in gl_MultiTexCoord2
#define cogl_tex_coord3_in gl_MultiTexCoord3
#define cogl_tex_coord4_in gl_MultiTexCoord4
#define cogl_tex_coord5_in gl_MultiTexCoord5
#define cogl_tex_coord6_in gl_MultiTexCoord6
#define cogl_tex_coord7_in gl_MultiTexCoord7
#define cogl_normal_in gl_Normal
#define cogl_position_out gl_Position
#define cogl_point_size_out gl_PointSize
#define cogl_color_out gl_FrontColor
#define cogl_tex_coord_out gl_TexCoord
#define cogl_modelview_matrix gl_ModelViewMatrix
#define cogl_modelview_projection_matrix gl_ModelViewProjectionMatrix
#define cogl_projection_matrix gl_ProjectionMatrix
#define cogl_texture_matrix gl_TextureMatrix
And for fragment shaders we have:
#define cogl_color_in gl_Color
#define cogl_tex_coord_in gl_TexCoord
#define cogl_color_out gl_FragColor
#define cogl_depth_out gl_FragDepth
#define cogl_front_facing gl_FrontFacing
The GLES2 wrapper was referring to COGL_MATERIAL_PROGRAM_TYPE_GLSL but
this has since been renamed to COGL_PIPELINE_PROGRAM_TYPE_GLSL so the
GLES2 backend wouldn't compile.
This merges the two implementations of CoglProgram for the GLES2 and
GL backends into one. The implementation is more like the GLES2
version which would track the uniform values and delay sending them to
GL. CoglProgram is now effectively just a GList of CoglShaders along
with an array of stored uniform values. CoglProgram never actually
creates a GL program, instead this is left up to the GLSL material
backend. This is necessary on GLES2 where we may need to relink the
user's program with different generated shaders depending on the other
emulated fixed function state. It will also be necessary in the future
GLSL backends for regular OpenGL. The GLSL and ARBfp material backends
are now the ones that create and link the GL program from the list of
shaders. The linked program is attached to the private material state
so that it can be reused if the CoglProgram is used again with the
same material. This does mean the program will get relinked if the
shader is used with multiple materials. This will be particularly bad
if the legacy cogl_program_use function is used because that
effectively always makes one-shot materials. This problem will
hopefully be alleviated if we make a hash table with a cache of
generated programs. The cogl program would then need to become part of
the hash lookup.
Each CoglProgram now has an age counter which is incremented every
time a shader is added. This is used by the material backends to
detect when we need to create a new GL program for the user program.
The internal _cogl_use_program function now takes a GL program handle
rather than a CoglProgram. It no longer needs any special differences
for GLES2. The GLES2 wrapper function now also uses this function to
bind its generated shaders.
The ARBfp shaders no longer store a copy of the program source but
instead just directly create a program object when cogl_shader_source
is called. This avoids having to reupload the source if the same
shader is used in multiple materials.
There are currently a few gross hacks to get the GLES2 backend to work
with this. The problem is that the GLSL material backend is now
generating a complete GL program but the GLES2 wrapper still needs to
add its fixed function emulation shaders if the program doesn't
provide either a vertex or fragment shader. There is a new function in
the GLES2 wrapper called _cogl_gles2_use_program which replaces the
previous cogl_program_use implementation. It extracts the GL shaders
from the GL program object and creates a new GL program containing all
of the shaders plus its fixed function emulation. This new program is
returned to the GLSL material backend so that it can still flush the
custom uniforms using it. The user_program is attached to the GLES2
settings struct as before but its stored using a GL program handle
rather than a CoglProgram pointer. This hack will go away once the
GLSL material backend replaces the GLES2 wrapper by generating the
code itself.
Under Mesa this currently generates some GL errors when glClear is
called in test-cogl-shader-glsl. I think this is due to a bug in Mesa
however. When the user program on the material is changed the GLSL
backend gets notified and deletes the GL program that it linked from
the user shaders. The program will still be bound in GL
however. Leaving a deleted shader bound exposes a bug in Mesa's
glClear implementation. More details are here:
https://bugs.freedesktop.org/show_bug.cgi?id=31194
*** WARNING: THIS COMMIT CHANGES THE BUILD ***
Do not recurse into the backend directories to build private, internal
libraries.
We only recurse from clutter/ into the cogl sub-directory; from there,
we don't recurse any further. All the backend-specific code in Cogl and
Clutter is compiled conditionally depending on the macros defined by the
configure script.
We still recurse from the top-level directory into doc, clutter and
tests, because gtk-doc and tests do not deal nicely with non-recursive
layouts.
This change makes Clutter compile slightly faster, and cleans up the
build system, especially when dealing with introspection data.
Ideally, we also want to make Cogl part of the top-level build, so that
we can finally drop the sed trick to change the shared library from the
GIR before compiling it.
Currently disabled:
‣ OSX backend
‣ Fruity backend
Currently enabled but untested:
‣ EGL backend
‣ Windows backend
Previously custom uniforms were tracked in _CoglGles2Wrapper but as part
of a process to consolidate the gl/gles2 shader code it seems to make
sense for this state to be tracked in the CoglProgram object instead.
http://bugzilla.o-hand.com/show_bug.cgi?id=2179
This adds a publicly exposed experimental API for a 3D texture
backend. There is a feature flag which can be checked for whether 3D
textures are supported. Although we require OpenGL 1.2 which has 3D
textures in core, GLES only provides them through an extension so the
feature can be used to detect that.
The textures can be created with one of two new API functions :-
cogl_texture_3d_new_with_size
and
cogl_texture_3d_new_from_data
There is also internally a new_from_bitmap function. new_from_data is
implemented in terms of this function.
The two constructors are effectively the only way to upload data to a
3D texture. It does not work to call glTexImage2D with the
GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does
nothing. It would be possible to make cogl_texture_get_data do
something sensible like returning all of the images as a single long
image but this is not currently implemented and instead the virtual
just always fails. We may want to add API specific to the 3D texture
backend to get and set a sub region of the texture.
All of those three functions can throw a GError. This will happen if
the GPU does not support 3D textures or it does not support NPOTs and
an NPOT size is requested. It will also fail if the FBO extension is
not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not
given. This could be avoided by copying the code for the
GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of
keeping the code simple this is not yet done.
This adds a couple of functions to cogl-texture-driver for uploading
3D data and querying the 3D proxy
texture. prep_gl_for_pixels_upload_full now also takes sets the
GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding
between the images. Whenever 3D texture is uploading, both the height
of the images and the height of all of the data is specified (either
explicitly or implicilty from the CoglBitmap) so that the image height
can be deduced by dividing by the depth.
Previously when comparing whether the settings for a layer are equal
it would only check if one of them was enabled. If so then it would
assume the other one was enabled and continue to compare the texture
environment. Now it also checks whether the enabledness differs.
This adds a new API call to enable point sprite coordinate generation
for a material layer:
void
cogl_material_set_layer_point_sprite_coords_enabled (CoglHandle material,
int layer_index,
gboolean enable);
There is also a corresponding get function.
Enabling point sprite coords simply sets the GL_COORD_REPLACE of the
GL_POINT_SPRITE glTexEnv when flusing the material. There is no
separate application control for glEnable(GL_POINT_SPRITE). Instead it
is left permanently enabled under the assumption that it has no affect
unless GL_COORD_REPLACE is enabled for a texture unit.
http://bugzilla.openedhand.com/show_bug.cgi?id=2047
Some internal symbols used for the GLES 2 wrapper were accidentally
being exported. This prepends an underscore to them so they won't
appear in the shared library.
At two places in cogl_wrap_prepare_for_draw it was trying to loop over
the texture units to flush some state. However it was retrieving the
texture unit pointer using w->active_texture_unit instead of the loop
index so it would end up with the wrong state.
Also in glEnableClientState it was using the active unit instead of
the client active unit.
Since using addresses that might change is something that finally
the FSF acknowledge as a plausible scenario (after changing address
twice), the license blurb in the source files should use the URI
for getting the license in case the library did not come with it.
Not that URIs cannot possibly change, but at least it's easier to
set up a redirection at the same place.
As a side note: this commit closes the oldes bug in Clutter's bug
report tool.
http://bugzilla.openedhand.com/show_bug.cgi?id=521
Previously the GLES2 backend needed a special wrapper for
glBindTexture because it needed to know the internal GL format of the
texture in order to correctly implement the GL_MODULATE texture env
mode. When GL_MODULATE is used then the RGB values are taken from the
previous texture layer rather than being fetched from the
texture. However since the material API was added Cogl no longer uses
the GL_MODULATE texture env mode but instead always uses GL_COMBINE.
Compiling the GLES2 backend broke since the more-texture-backends
branch merge because the cogl_get_internal_gl_format function was
removed and there was one place in GLES2 specific code that was using
this to bind the texture.
The texture layer combine functions are now hard coded to GL_COMBINE
instead of GL_MODULATE. The combine function can be customized with
all the parameters of GL_COMBINE. A shader is generated to implement
the given parameters.
Currently it will try to generate code for the constant color but it
will use a uniform which does not exist.
The GLES2 backend for Cogl is failing to compile because
GL_MAX_TEXTURE_UNITS is not defined. Let's define it and provide a
wrapper which uses GL_MAX_TEXTURE_IMAGE_UNITS or
COGL_GLES2_MAX_TEXTURE_UNITS, whichever is the smallest.
We've had complaints that our Cogl code/headers are a bit "special" so
this is a first pass at tidying things up by giving them some
consistency. These changes are all consistent with how new code in Cogl
is being written, but the style isn't consistently applied across all
code yet.
There are two parts to this patch; but since each one required a large
amount of effort to maintain tidy indenting it made sense to combine the
changes to reduce the time spent re indenting the same lines.
The first change is to use a consistent style for declaring function
prototypes in headers. Cogl headers now consistently use this style for
prototypes:
return_type
cogl_function_name (CoglType arg0,
CoglType arg1);
Not everyone likes this style, but it seems that most of the currently
active Cogl developers agree on it.
The second change is to constrain the use of redundant glib data types
in Cogl. Uses of gint, guint, gfloat, glong, gulong and gchar have all
been replaced with int, unsigned int, float, long, unsigned long and char
respectively. When talking about pixel data; use of guchar has been
replaced with guint8, otherwise unsigned char can be used.
The glib types that we continue to use for portability are gboolean,
gint{8,16,32,64}, guint{8,16,32,64} and gsize.
The general intention is that Cogl should look palatable to the widest
range of C programmers including those outside the Gnome community so
- especially for the public API - we want to minimize the number of
foreign looking typedefs.
These macros used to define Cogl wrappers for the GLenum values. There are
now Cogl enums everywhere in the API where these were required so we
shouldn't need them anymore. They were in the public headers but as
they are not neccessary and were not in the API docs for Clutter 1.0
it should be safe to remove them.
Since we no longer depend on the GL matrix API in Cogl we can remove a lot
of wrapper code from the GLES 2 backend. This is particularly nice given
that there was no code shared between the cogl-matrix-stack API and gles2
wrappers so we had a lot of duplicated logic.
As part of an incremental process to have Cogl be a standalone project we
want to re-consider how we organise the Cogl source code.
Currently this is the structure I'm aiming for:
cogl/
cogl/
<put common source here>
winsys/
cogl-glx.c
cogl-wgl.c
driver/
gl/
gles/
os/ ?
utils/
cogl-fixed
cogl-matrix-stack?
cogl-journal?
cogl-primitives?
pango/
The new winsys component is a starting point for migrating window system
code (i.e. x11,glx,wgl,osx,egl etc) from Clutter to Cogl.
The utils/ and pango/ directories aren't added by this commit, but they are
noted because I plan to add them soon.
Overview of the planned structure:
* The winsys/ API is the API that binds OpenGL to a specific window system,
be that X11 or win32 etc. Example are glx, wgl and egl. Much of the logic
under clutter/{glx,osx,win32 etc} should migrate here.
* Note there is also the idea of a winsys-base that may represent a window
system for which there are multiple winsys APIs. An example of this is
x11, since glx and egl may both be used with x11. (currently only Clutter
has the idea of a winsys-base)
* The driver/ represents a specific varient of OpenGL. Currently we have "gl"
representing OpenGL 1.4-2.1 (mostly fixed function) and "gles" representing
GLES 1.1 (fixed funciton) and 2.0 (fully shader based)
* Everything under cogl/ should fundamentally be supporting access to the
GPU. Essentially Cogl's most basic requirement is to provide a nice GPU
Graphics API and drawing a line between this and the utility functionality
we add to support Clutter should help keep this lean and maintainable.
* Code under utils/ as suggested builds on cogl/ adding more convenient
APIs or mechanism to optimize special cases. Broadly speaking you can
compare cogl/ to OpenGL and utils/ to GLU.
* clutter/pango will be moved to clutter/cogl/pango
How some of the internal configure.ac/pkg-config terminology has changed:
backendextra -> CLUTTER_WINSYS_BASE # e.g. "x11"
backendextralib -> CLUTTER_WINSYS_BASE_LIB # e.g. "x11/libclutter-x11.la"
clutterbackend -> {CLUTTER,COGL}_WINSYS # e.g. "glx"
CLUTTER_FLAVOUR -> {CLUTTER,COGL}_WINSYS
clutterbackendlib -> CLUTTER_WINSYS_LIB
CLUTTER_COGL -> COGL_DRIVER # e.g. "gl"
Note: The CLUTTER_FLAVOUR and CLUTTER_COGL defines are kept for apps
As the first thing to take advantage of the new winsys component in Cogl;
cogl_get_proc_address() has been moved from cogl/{gl,gles}/cogl.c into
cogl/common/cogl.c and this common implementation first trys
_cogl_winsys_get_proc_address() but if that fails then it falls back to
gmodule.