If the popup was dismissed (i.e. has no MetaWindow anymore), it'll also
have no parent surface. With no parent surface, we'd try to fetch a
transaction from NULL and crash, but if we don't try if we were
dismissed, we won't reach here anyway.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2940>
With the frames client, we do no longer handle events for the
frame window inside Mutter. This means we do not get events
"for free" to handle focus on a just clicked frame window.
This results in a background window not ending up focused if
clicked on its frame.
In order to fix this, make the passive button grab extend to
the frame window if a window has one. This brings back
focus-on-click behavior, while treating windows further as
a unitary surface.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2727
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2954>
Pass the timestamp of the frame as the target timestamp of the
record. This makes the rudimentary frame throttling mechanism
inside MetaScreenCastStreamSrc work with the timing variability
that dynamic dispatch times introduced.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2804>
Instead of always, unconditionally scheduling an idle callback for
frame recording, try to record a DMA-BUF only frame, and only if
that's not possible, schedule the idle callback.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2804>
When a stream source subclass asks for a DMA-BUF only frame record,
it is legitimate to return FALSE in do_record_frame() - meaning that
a frame was not recorded - but not return an error - meaning nothing
actually failed.
This avoids spamming the journal with warnings on a legitimate case.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2804>
Add meta_screen_cast_stream_src_maybe_record_frame_with_timestamp()
which operates on arbitrary timestamps; and make the current function
meta_screen_cast_stream_src_maybe_record_frame() just call into the
new variant, passing g_get_monotonic_time() as the timestamp.
This will be useful later we start using the target timestamp of the
frame for screencasting.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2804>
This change will export the damaged regions (when available) out
to the pipewire client. This change is currently specific to
virtual streams only (where I was able to test the change) and
maintains the current behavior for other screencast stream types.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2775>
This change allows clipped redraws for offscreen. The net
effect of this change is to preserve the original redraw clip when
possible (rather than overwriting it with the full view redraw) in
the paint context.
This eventually helps in retrieving the fine grained updated regions of
the frame since last redraw and sending it to the pipewire client
(as shown in a subsquent CL).
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2775>
Returning FALSE does not indicate an error, but a valid backlight
value of 0. Consumers expect a negative value to indicate no
backlight support, so return -1 in case of error, just like we
already do for invalid values.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2947>
The window tracker is filtering XEvents manually as it only requires a
subset of the ones that Gdk listens to in the root window, and this is
nice, but we were restricting the set a bit too much because due to this
we were not notified when an xsettings manager was available, and thus
in case gsd-xsettings was launched after meta-window-tracker (a normal
scenario under X11), no xsetting was actually applied to the decoration
windows.
As per this, the default settings were used for everything and never
updated, until a restart of the window-tracker.
In order to be able to monitor the XSettings changes at startup, we also
need to select the StructureNotifyMask as gtk always do by default.
See also:
https://gitlab.gnome.org/GNOME/gtk/-/blob/4.11.1/gdk/x11/gdkscreen-x11.c#L947-950Fixes: #2580
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2948>
The anchor position calculations are somewhat unnecessarily complex
based on root coordinates of pointer and frame positions. This requires
tracking both things, and we don't always get it quite right with the
latter (e.g. window repositions, resizes or overshrinks, leaving the
anchor position visually outside the window).
In order to improve this, capture the window-relative coordinates
when starting the window drag, and ensure the window is always repositioned
in that position, relative to its current size.
This avoids these glitches when unmaximizing a window (e.g. dragged from
the bottom through super+button1 press), or moving windows between monitors
with different scales.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2730
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2942>
Since we only track changes to window_drag->anchor_window_pos
during move operations through on_grab_window_size_changed(), this
rectangle is in essence the same than window_drag->initial_window_pos
all the time. Just use that and move away from the anchor_window_pos
rectangle.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2942>
scan_visible_region() scans through each value of a uint8_t array and checks
whether that value is 255. Right now it always checks one value too much
though, resulting in a buffer overflow. Fix that by checking the array
bounds before actually accessing the array.
Found by running gnome-shell with address sanitizer and starting
GIMP.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2856>
Both GRAB_OP_KEYBOARD_MOVING and GRAB_OP_KEYBOARD_RESIZING_* are
defined as GRAB_OP_WINDOW_BASE with FLAG_KEYBOARD set, but the
latter have additional bits set to indicate the direction.
That is, the GRAB_OP_KEYBOARD_MOVING bitmask cannot be used to
differentiate between move- and resize operations. Instead,
check that no direction bits are set.
https://gitlab.gnome.org/GNOME/mutter/-/issues/2684
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2908>
The unknown color space's only purpose is to signal that the current KMS
state has a unknown color space set. It is not one of the color spaces
that can be set. We already only try to set a color space if the default
color space is supported so we should use the default color space as a
fallback instead of the unknown color space.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2693
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2915>
With the move away from GTK3, and the indirect dependency on GTK4
grown in the GNOME Shell side, we've indirectly gotten a small sneaky
behavioral change: The GTK4 library will, right on dlopen, get
DESKTOP_AUTOSTART_ID for itself and delete it from the environment.
This happens before our own X11 session management code is
initialized, which confuses the hell out of it, into thinking
initialization is actually shutdown, gnome-session does not follow
along with this request, which leaves GNOME Shell into a confused
startup state where it never calls SmcSaveYourselfDone() and grinds
startup to a halt until gnome-session decides to move things forward.
In order to fix this, get the DESKTOP_AUTOSTART_ID before we lend
control to GNOME Shell bits and GTK4 is possibly initialized, and
feed it directly to our X11 session manager bits.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2906>
We might get told to restore the old monitor configuration by the
monitor configuration prompt, in case the user pressed "revert" or
equivalent. This might be in response to a button press, and those
happen during frame clock dispatch. If we would restore an old
configuration during dispatch, it means we would reconfigure the
monitors including their stage views while dispatching, which means we'd
destroy the frame clock while it's dispatching.
Doing that causes problems, as the frame clock isn't expecting to be
destroyed mid-function. Specifically,
We'd enter
clutter_frame_clock_dispatch (clutter-frame-clock.c:811)
frame_clock_source_dispatch (clutter-frame-clock.c:839)
g_main_dispatch (gmain.c:3454)
g_main_context_dispatch (gmain.c:4172)
g_main_context_iterate.constprop.0 (gmain.c:4248)
g_main_loop_run (gmain.c:4448)
meta_context_run_main_loop (meta-context.c:482)
main (main.c:663)
which would first call
_clutter_process_event (clutter-main.c:920)
_clutter_stage_process_queued_events (clutter-stage.c:757)
handle_frame_clock_before_frame (clutter-stage-view.c:1150)
which would emit e.g. a button event all the way to a button press
handler, which would e.g. deny the new configuration:
restore_previous_config (meta-monitor-manager.c:1931)
confirm_configuration (meta-monitor-manager.c:2866)
meta_monitor_manager_confirm_configuration (meta-monitor-manager.c:2880)
meta_plugin_complete_display_change (meta-plugin.c:172)
That would then regenerate the monitor configuration and stage view
layout, which would destroy the old stage view and frame clock.
meta_stage_native_rebuild_views (meta-stage-native.c:68)
meta_backend_native_update_screen_size (meta-backend-native.c:457)
meta_backend_sync_screen_size (meta-backend.c:266)
meta_backend_monitors_changed (meta-backend.c:337)
meta_monitor_manager_notify_monitors_changed (meta-monitor-manager.c:3595)
meta_monitor_manager_rebuild (meta-monitor-manager.c:3683)
meta_monitor_manager_native_apply_monitors_config (meta-monitor-manager-native.c:343)
meta_monitor_manager_apply_monitors_config (meta-monitor-manager.c:704)
After returning back to the original clutter_frame_clock_dispatch()
frame, various state in the frame clock will be gone and we'd crash.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2901>
Commit 7e9d9c7eb9 added new API to replace GTK for accelerator
parsing.
Unfortunately there is another case in gnome-shell, where we have
to get the label from the logical binding name rather than the
modifier+keysym combination.
Add another small method to cover that use case.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2899>
Normally, mutter implicitly allows a window being shown to take
focus. This is normally desired, except it steals input from
GNOME Shell self. Avoid focusing the just shown window in those
situations.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2878>
When a X11 application is started, typically what happens is:
- A startup notification token is created, with a _TIME%d suffix
- The application being spawned receives it through the environment
- (dbus piping, maybe)
- The application replies the startup notification token, and
fetches the timestamp from it
- The application makes a _NET_ACTIVE_WINDOW client message request
with this timestamp
- Mutter handles this client request and activates/focuses the window
Prevent this last step if windows are not interactable (e.g. there is
a compositor grab) and ignore the focus request. This specifically
applies to X11 clients requesting focus themselves, and unlike previous
approaches, doesn't try to prevent focus changes that do come through
interaction with Mutter/GNOME Shell.
This should only break if applications do not observe _NET_ACTIVE_WINDOW
and perform XSetInputFocus on themselves, but in that case the X11
keyboard focus is stolen from our hands already.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2878>