Split up logical monitor cration into derived (when derived from
current underlying configuration) and non-derived (when creating from a
logical monitor configuration). This avoids that type of logic in the
logical monitor creation function.
https://bugzilla.gnome.org/show_bug.cgi?id=779745
Handle headless setup gracefully by having no logical monitors. This
commit only makes the monitor management code deal with it; other areas
may still not be able to handle it.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Handle configuring when the laptop lid is closed. This is so far
handled by creating a linear configuration while ignoring the laptop
panel. Changing the current configuration will come later.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Move the UpClients notify::lid-is-closed signal handling into
MetaMonitorManager, and put the getter behind a vfunc. This means
Placing it behind a vfunc allows custom backends to implement it
differently; for example the test backend can mock the state.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
The new monitor configuration system (MetaMonitorConfigManager) aims to
replace the current MetaMonitorConfig. The main difference between the
two is that MetaMonitorConfigManager works with higher level input
(MetaMonitor, MetaMonitorMode) instead of directly looking at the CRTC
and connector state. It still produces CRTC and connector configuration
later applied by the respective backends.
Other difference the new system aims to introduce is that the
configuration system doesn't manipulate the monitor manager state; that
responsibility is left for the monitor manager to handle (it only
manages configuration and creates CRTC/connector assignments, it
doesn't apply anything).
The new configuration system allows backends to not rely on deriving the
current configuration from the CRTC/connector state, as this may no longer be
possible (i.e. when using KMS and multiple framebuffers).
The MetaMonitorConfigManager system is so far disabled by default, as
it does not yet have all the features of the old system, but eventually
it will replace MetaMonitorConfig which will at that point be removed.
This will make it possible to remove old hacks introduced due to
limitations in the old system.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
The function meta_monitor_manager_read_current_config() was renamed to
meta_monitor_manager_read_current_state() as it does not read any
configuration, but reads the current state as described by the backend.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
In preparation of replacing the configuration system with one working
with high level monitors instead of low level outputs etc, move
configuarion handling code into obviously named function (containing
the word 'legacy'.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Don't deal with adding/removing tiled Xrandr monitors in the generic
backend, but leave it to the Xrandr backend. The tiled monitor will
itself notify the backend when such a monitor is added and removed.
Tiled Xrandr monitors are now based no MetaMonitor instead of
MetaLogicalMonitor. This means that mirrored tiled monitors will now be
represented correctly.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Instead of using crtcs and outputs to generate logical monitors, use
the ready made monitor abstraction that hides irrelevant things such as
monitor tiling etc.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Generate a set of "monitors" abstracting the physical concepts. Each
monitor is built up of one or more outputs; multiple outputs being
tiled monitors. Logical monitors will later be built from these.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
The MetaMonitorMode referred to the mode of a CRTC, and with the future
introduction of a MetaMonitor, theh old name would be confusing.
Instead call it what it is.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Instead of storing the logical monitors in an array and having users
either look up them in the array given an index or iterate using
indices, put it in a GList, and use GList iterators when iterating and
alternative API where array indices were previously used.
This allows for more liberty regarding the type of the logical monitor.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Refactor the tiled monitor assembly code (that constructs a logical
monitor out of tiling information. Part of the reason is to move away
from array based storage, part is to make the code easier to follow,
and part is to separate logical monitor construction from list
manipulation.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Change meta_monitor_manager_get_logical_monitor_at() to use floats,
replace users of meta_monitor_manager_get_monitor_at_point() to use the
API that returns a logical monitor and remove the now unused function.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Move the last piece of monitor grid getter API to the monitor manager
away from MetaScreen. The public facing API are still there, but are
thin wrappers around the MetaMonitorManager API.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Turning a rectangle into a logical monitor also has nothing to do with
the screen (MetaScreen) so move it to MetaMonitorManager which has that
information.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
This is the current equivalent of looking up the logical monitor in the
logical monitor array using the number, but eventually that will be
deprecated, and before that done differently, so add a temporary helper
for the places that has not been ported yet.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
It was just pointer to the actual list; having to synchronize a list of
logical monitors with the actual monitors managed by the backend is
unnecessary.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
In preparation for further refactorizations, rename the MetaMonitorInfo
struct to MetaLogicalMonitor. Eventually, part of MetaLogicalMonitor
will be split into a MetaMonitor type.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Being a listener to a signal, it is inconvenient to enforce order of
execution between different signal listeners. If there are things in
the backend that should be updated before various other signal
handlers, make sure so is done by emitting the signal after having
explicitly notified the backend.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
Wrap the existing laptop_display_is_on() method in a public function
that gnome-shell can use to query whether a builtin output is present
and enabled.
https://bugzilla.gnome.org/show_bug.cgi?id=765267
The max potential number of logical monitors (i.e. MetaMonitorInfos)
is the number of CRTCs, not the number of outputs.
In cases where we have more enabled CRTCs than connected outputs we
would end up appending more MetaMonitorInfos to the GArray than the
size it was initialized with which means the array would get
re-allocated rendering invalid some MetaCRTC->logical_monitor pointers
assigned previously and thus ending in crashes later on.
https://bugzilla.gnome.org/show_bug.cgi?id=751638
Some monitors return a bunch of bytes on their display descriptor
which aren't valid utf8 and thus we fail to serialize them later on
for the DisplayConfig DBus API.
Let's fall back to the stringified product code and serial number in
that case.
https://bugzilla.gnome.org/show_bug.cgi?id=752673
Tracking back from the monitor to the output every time we need to
figure out the scale of a window on a monitor is inconvenient, so
propagate the scale from the output to the monitor it is associated
with.
https://bugzilla.gnome.org/show_bug.cgi?id=744934
So that clients such as the control center can decide to hide an
underscanning checkbutton when the output does not support it.
Support in the KMS / native backend to come later...
The monitors info structure is created from the tiled outputs
and this is used as the central storage for info about a monitor
as opposed to the output state.
It appears at least the EDID mm w/h is for the whole monitor and
not per tile.