Prior to this commit, barriers were created with a MetaDisplay pointer,
despite being entities related and owned by the backend. In the X11
case, it was also not hooked up to the backend X11 connection, but the
clutter one, meaning for example that the logic was active (but dormant)
also for the Xwayland connection.
Fix this by moving X11 barrier management and event processing fully to
the backend. Also replace passing a display pointer with passing a
backend pointer. Keep the display pointer around for a release, but mark
it as deprecated.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2442>
Wine destroys its old selection window immediately before creating a new
selection. This would trigger restoring the clipboard, which would
overwrite the new selection with the old one. The selection window
however can also be destroyed as part of the shutdown process of
applications, such as Chromium for example. In those cases we want the
clipboard to be restored after the selection window has been destroyed.
Solve this by not immediately restoring the clipboard but instead using
a timeout which can be canceled by any new selection owner, such as in
the Wine case.
Fixes https://gitlab.gnome.org/GNOME/mutter/-/issues/1338https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1369
Instead of passing around an X11 Display pointer that is retrieved from
the default Gdk backend, then finding the MetaX11Display from said X11
Display, pass the MetaX11Display directly.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/854
Instead of open coding the X11 focus management in display.c, expose
it as a single function with similar arguments to its MetaDisplay
counterpart. This just means less X11 specifics in display.c.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/751
In all places (including src/wayland) we tap into meta_x11_display* focus
API, which then calls meta_display* API. This relation is backwards, so
rework input focus management so it's the other way around.
We now have high-level meta_display_(un)set_input_focus functions, which
perform the backend-independent maintenance, and calls into the X11
functions where relevant. These functions are what callers should use.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/420
This object takes care of the X11 representation of the window stack,
namely the _NET_CLIENT_LIST and _NET_CLIENT_LIST_STACKING root window
properties.
This code has been lifted from src/core/stack.c into src/x11 as it's
dependent on the X11 display availability. This also leaves MetaStack
squeaky clean of x11 specifics.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/420
This code takes care of both setting up X11 selection sources whenever
X11 clients claim selection ownership, and claiming selection ownership
on a mutter X11 window whenever other selection sources claim ownership.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/320
This object represents the selection ownership from an X11 client. The
list of supported targets is queried upfront, so its initialization is
asynchronous. Requests to read contents from the selection will hand
a MetaX11SelectionInputStream.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/320
Splitting out the X11 display initialization from display_open() broke
restoring the previously active workspace in two ways:
- when dynamic workspaces are used, the old workspaces haven't
been restored yet, so we stay on the first workspace
- when static workspaces are used, the code tries to access
the compositor that hasn't been initialized yet, resulting
in a segfault
Fix both those issues by splitting out restoring of the active workspace.
https://gitlab.gnome.org/GNOME/mutter/issues/479
Make meson link libmutter using -fvisibility=hidden, and introduce META_EXPORT
and META_EXPORT_TEST defines to mark a symbols as visible.
The TEST version is meant to be used to flag symbols that are only used
internally by mutter tests, but that should not be considered public API.
This allows us to be more precise in selecting what is exported and what is
not, without the need of a version-script file that would be more complicated
to maintain.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/395
Closing a GdkDisplay during an event handler is not currently supported by Gdk
and it will result in a crash when doing e.g. 'mutter --replace'. Using an idle
function will close it safely in a subsequent main loop iteration.
Fixes: https://gitlab.gnome.org/GNOME/gnome-shell/issues/595
Split X11 specific parts into MetaX11Display. This also required
changing MetaScreen to stop listening to any signals by itself, but
instead relying on MetaDisplay forwarding them. This was to ensure the
ordering. MetaDisplay listens to both the internal and external
monitors-changed signal so that it can pass the external one via the
redundant MetaDisplay(prev MetaScreen)::monitors-changed.
https://bugzilla.gnome.org/show_bug.cgi?id=759538
- Moved xdisplay, name and various atoms from MetaDisplay
- Moved xroot, screen_name, default_depth and default_xvisual
from MetaScreen
- Moved some X11 specific functions from screen.c and display.c
to meta-x11-display.c
https://bugzilla.gnome.org/show_bug.cgi?id=759538