This adds CoglFramebuffer methods for accessing the clip stack. We plan
on making some optimizations to how framebuffer state is flushed which
will require us to track when a framebuffer's clip state has changed.
This api also ties in to the longer term goal of removing the need for a
default global CoglContext since these methods are all implicitly
related to a specific context via their framebuffer argument.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This api is deprecated and documented to be a NOP which wasn't actually
true. This patch actually updates the function to be a NOP. Its nice
that this gets rid of a point where we flush framebuffer state because
we are looking to add a new VirtualFramebuffer interface which will need
special consideration at each of the points we flush framebuffer state.
It was a mistake that this API was ever published, we don't believe
anyone is using the api but until we break api we have to keep the
symbol. The documented semantics are vague enough that a NOP is ok since
we never explicitly documented how the state would be flushed to GL so
there would be no way to reliably use that state anyway.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
Since we've had several developers from admirable projects say they
would like to use Cogl but would really prefer not to pull in
gobject,gmodule and glib as extra dependencies we are investigating if
we can get to the point where glib is only an optional dependency.
Actually we feel like we only make minimal use of glib anyway, so it may
well be quite straightforward to achieve this.
This adds a --disable-glib configure option that can be used to disable
features that depend on glib.
Actually --disable-glib doesn't strictly disable glib at this point
because it's more helpful if cogl continues to build as we make
incremental progress towards this.
The first use of glib that this patch tackles is the use of
g_return_val_if_fail and g_return_if_fail which have been replaced with
equivalent _COGL_RETURN_VAL_IF_FAIL and _COGL_RETURN_IF_FAIL macros.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This adds a new experimental function, cogl_clip_push_primitive, that
allows you to push a CoglPrimitive onto the clip stack. The primitive
should describe a flat 2D shape and the geometry shouldn't include any
self intersections. When pushing a primitive you also need to tell
Cogl what the bounding box of that shape is (in shape local coordinates)
so that Cogl is able to efficiently update the required region of the
stencil buffer.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
Some of the functions we were calling in cogl_framebuffer_clear[4f] were
referring to the current framebuffer, which would result in a crash
if nothing had been pushed before trying to explicitly clear a given
framebuffer.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This renames the two internal functions _cogl_get_draw/read_buffer
as cogl_get_draw_framebuffer and _cogl_get_read_framebuffer. The
former is now also exposed as experimental API.
The current framebuffer is now internally separated so that there can
be a different draw and read buffer. This is required to use the
GL_EXT_framebuffer_blit extension. The current draw and read buffers
are stored as a pair in a single stack so that pushing the draw and
read buffer is done simultaneously with the new
_cogl_push_framebuffers internal function. Calling
cogl_pop_framebuffer will restore both the draw and read buffer to the
previous state. The public cogl_push_framebuffer function is layered
on top of the new function so that it just pushes the same buffer for
both drawing and reading.
When flushing the framebuffer state, the cogl_framebuffer_flush_state
function now tackes a pointer to both the draw and the read
buffer. Anywhere that was just flushing the state for the current
framebuffer with _cogl_get_framebuffer now needs to call both
_cogl_get_draw_buffer and _cogl_get_read_buffer.
Instead of having _cogl_get/set_clip stack which reference the global
CoglContext this instead makes those into CoglClipState method functions
named _cogl_clip_state_get/set_stack that take an explicit pointer to a
CoglClipState.
This also adds _cogl_framebuffer_get/set_clip_stack convenience
functions that avoid having to first get the ClipState from a
framebuffer then the stack from that - so we can maintain the
convenience of _cogl_get_clip_stack.
Instead of having a single journal per context, we now have a
CoglJournal object for each CoglFramebuffer. This means we now don't
have to flush the journal when switching/pushing/popping between
different framebuffers so for example a Clutter scene that involves some
ClutterEffect actors that transiently redirect to an FBO can still be
batched.
This also allows us to track state in the journal that relates to the
current frame of its associated framebuffer which we'll need for our
optimization for using the CPU to handle reading a single pixel back
from a framebuffer when we know the whole scene is currently comprised
of simple rectangles in a journal.
Previously in cogl-clip-state.c when it detected that the current
modelview matrix is screen-aligned it would convert the clip entry to
a window clip. Instead of doing this cogl-clip-stack.c now contains
the detection and keeps the entry as a rectangle clip but marks that
it is entirely described by its scissor rect. When flusing the clip
stack it doesn't do anything extra for entries that have this mark
(because the clip will already been setup by the scissor). This is
needed so that we can still track the original rectangle coordinates
and modelview matrix to help detect when it would be faster to modify
the rectangle when adding it to the journal rather than having to
break up the batch to set the clip state.
When COGL_ENABLE_EXPERIMENTAL_2_0_API is defined cogl.h will now include
cogl2-path.h which changes cogl_path_new() so it can directly return a
CoglPath pointer; it no longer exposes a prototype for
cogl_{get,set}_path and all the remaining cogl_path_ functions now take
an explicit path as their first argument.
The idea is that we want to encourage developers to retain path objects
for as long as possible so they can take advantage of us uploading the
path geometry to the GPU. Currently although it is possible to start a
new path and query the current path, it is not convenient.
The other thing is that we want to get Cogl to the point where nothing
depends on a global, current context variable. This will allow us to one
day define a sensible threading model if/when that is ever desired.
When adding a new entry to the journal a reference is now taken on the
current clip stack. Modifying the current clip state no longer causes
a journal flush. The journal flushing code now has an extra stage to
compare the clip state of each entry. The comparison can simply be
done by comparing the pointers. Although different clip states will
still end up with multiple draw calls this at leasts allows a scene
comprising of multiple different clips to be upload with one vbo. It
also lays the groundwork to do certain tricks when drawing clipped
rectangles such as modifying the geometry instead of setting a clip
state.
Flushing the clip state no longer does anything that would cause the
journal to flush. The clip state is only flushed when flushing the
framebuffer state and in all cases this ends up flushing the journal
in one way or another anyway. Avoiding flushing the journal will make
it easier to log the clip state in the journal.
Previously when trying to set up a rectangle clip that can't be
scissored or when using a path clip the code would use cogl_rectangle
as part of the process to fill the stencil buffer. This is now changed
to use a new internal _cogl_rectangle_immediate function which
directly uses the vertex array API to draw a triangle strip without
affecting the journal. This should be just as efficient as the
previous journalled code because these places would end up flushing
the journal immediately before and after submitting the single
rectangle anyway and flushing the journal always creates a new vbo so
it would effectively do the same thing.
Similarly there is also a new internal _cogl_clear function that does
not flush the journal.
Previously we tracked whether the clip stack needs flushing as part of
the CoglClipState which is part of the CoglFramebuffer state. This is
a bit odd because most of the clipping state (such as the clip planes
and the scissor) are part of the GL context's state rather than the
framebuffer. We were marking the clip state on the framebuffer dirty
every time we change the framebuffer anyway so it seems to make more
sense to have the dirtiness be part of the global context.
Instead of a just a single boolean to record whether the state needs
flushing, the CoglContext now holds a reference to the clip stack that
was flushed. That way we can flush arbitrary stack states and if it
happens to be the same as the state already flushed then Cogl will do
nothing. This will be useful if we log the clip stack in the journal
because then we will need to flush unrelated clip stack states for
each batch.
Instead of having a separate CoglHandle for CoglClipStack the code is
now expected to directly hold a pointer to the top entry on the
stack. The empty stack is then the NULL pointer. This saves an
allocation when we want to copy the stack because we can just take a
reference on a stack entry. The idea is that this will make it
possible to store the clip stack in the journal without any extra
allocations.
The _cogl_get_clip_stack and set functions now take a CoglClipStack
pointer instead of a handle so it would no longer make sense to make
them public. However I think the only reason we would have wanted that
in the first place would be to save the clip state between switching
FBOs and that is no longer necessary.
The transform_point function takes a modelview matrix, projection
matrix and a viewport and performs all three transformations on a
point to give a Cogl window coordinate. This is useful in a number of
places in Cogl so this patch moves it to cogl.c and adds it to
cogl-internal.h
This adds three new internal API functions which can be used to retain
the clip stack state and restore it later:
_cogl_get_clip_stack
_cogl_set_clip_stack
_cogl_clip_stack_copy
The functions are currently internal and not yet used but we may want
to make them public in future to replace the cogl_clip_stack_save()
and cogl_clip_stack_restore() APIs.
The get function just returns the handle to the clip stack at the top
of the stack of stacks and the set function just replaces it.
The copy function makes a cheap copy of an existing stack by taking a
reference to the top stack entry. This ends up working like a deep
copy because there is no way to modify entries of a stack but it
doesn't actually copy the data.
CoglClipStackState has now been renamed to CoglClipState and is moved
to a separate file. CoglClipStack now just maintains a stack and
doesn't worry about the rest of the state. CoglClipStack sill contains
the code to flush the stack to GL.