This means objects have an owner, where the chain eventually always
leads to a MetaContext. This also means that all objects can find their
way to other object instances via the chain, instead of scattered global
singletons.
This is a squashed commit originally containing the following:
cursor-tracker: Don't get backend from singleton
idle-manager: Don't get backend from singleton
input-device: Pass pointer to backend during construction
The backend is needed during construction to get the wacom database.
input-mapper: Pass backend when constructing
monitor: Don't get backend from singleton
monitor-manager: Get backend directly from monitor manager
remote: Get backend from manager class
For the remote desktop and screen cast implementations, replace getting
the backend from singletons with getting it via the manager classes.
launcher: Pass backend during construction
device-pool: Pass backend during construction
Instead of passing the (maybe null) launcher, pass the backend, and get
the launcher from there. That way we always have a way to some known
context from the device pool.
drm-buffer/gbm: Get backend via device pool
cursor-renderer: Get backend directly from renderer
input-device: Get backend getter
input-settings: Add backend construct property and getter
input-settings/x11: Don't get backend from singleton
renderer: Get backend from renderer itself
seat-impl: Add backend getter
seat/native: Get backend from instance struct
stage-impl: Get backend from stage impl itself
x11/xkb-a11y: Don't get backend from singleton
backend/x11/nested: Don't get Wayland compositor from singleton
crtc: Add backend property
Adding a link to the GPU isn't enough; the virtual CRTCs of virtual
monitors doesn't have one.
cursor-tracker: Don't get display from singleton
remote: Don't get display from singleton
seat: Don't get display from singleton
backend/x11: Don't get display from singleton
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2718>
Instead of passing 4 arguments (red, green and blue arrays as well as a
size), always pass them together in a new struct MetaGammaLut. Makes
things slightly less tedious.
The KMS layer still has its own variant, but lets leave it as that for
now, to keep the KMS layer "below" the cross backend CRTC layer.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2165>
In practice, for KMS backend CRTC's, we cache the gamma in the monitor
manager instance, so that anyone asking gets the pending or up to date
value, instead of the potentially not up to date value if one queries
after gamma was scheduled to be updated, and before it was actually
updated.
While this is true, lets still move the API to the MetaCrtc type; the
backend specific implementation can still look up cached values from the
MetaMonitorManager, but for users, it becomes less cumbersome to not
have to go via the monitor manager.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2165>
Just as with MetaOutput, instead of the home baked "inheritance" system,
using a gpointer and a GDestroyNotify function to keep the what
effectively is sub type details, make MetaCrtc an abstract derivable
type, and make the implementations inherit it.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1287
Now set as a property during construction. Only actually set by the
Xrandr backend, as it's the only one currently not supporting all
transforms, which is the default.
While at it, move the 'ALL_TRANFORMS' macro to meta-monitor-tranforms.h.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1287
To make it more reliable to distinguish between values that are read
from the backend implementation (which is likely to be irrelevant for
anything but the backend implementation), split out those values (e.g.
layout).
This changes the meaning of what was MetaCrtc::rect, to a
MetaCrtcConfig::layout which is the layout the CRTC has in the global
coordinate space.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1042
In order to eventually support multilpe GPUs with their own connectors,
split out related meta data management (i.e. outputs, CRTCs and CRTC
modes) into a new MetaGpu GObject.
The Xrandr backend always assumes there is always only a single "GPU" as
the GPU is abstracted by the X server; only the native backend (aside
from the test backend) will eventually see more than one GPU.
The Xrandr backend still moves some management to MetaGpuXrandr, in
order to behave more similarly to the KMS counterparts.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
Instead of passing it around or fetching the singleton, keep a pointer
to the monitor manager that owns the CRTC. This will eventually be
replaced with a per GPU/graphics card object.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
Convert MetaCrtcMode from a plain struct to a GObject. This changes the
storage format, and also the API, as the API was dependent on the
storage format.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
Turn MetaCrtc into a GObject and move it to a separate file. This
changes the storage format, resulting in changing the API for accessing
MetaCrtcs from using an array, to using a GList.
https://bugzilla.gnome.org/show_bug.cgi?id=785381