Use of cogl_set_depth_test_enabled() has been deprecated for some time
and cogl-create already uses the new api for enabling depth testing so
it was just an oversight that we forgot to remove the old call to
cogl_set_depth_test_enabled().
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This adds cogl_framebuffer_ apis for drawing attributes and primitives
that replace corresponding apis that depend on the default CoglContext.
This is part of the on going effort to adapt the Cogl api so it no
longer depends on a global context variable.
All the new drawing functions also take an explicit pipeline argument
since we are also aiming to avoid being a stateful api like Cairo and
OpenGL. Being stateless makes it easier for orthogonal components to
share access to the GPU. Being stateless should also minimize any
impedance miss-match for those wanting to build higher level stateless
apis on top of Cogl.
Note: none of the legacy, global state options such as
cogl_set_depth_test_enabled(), cogl_set_backface_culling_enabled() or
cogl_program_use() are supported by these new drawing apis and if set
will simply be silently ignored.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
Instead of using apis like cogl_push/pop_matrix, cogl_rotate,
cogl_translate and cogl_scale all the examples now use the
cogl_framebuffer_* equivalents. Our aim is to remove the need for the
default CoglContext and so we are switching towards apis that
are explicitly tied to a specific context.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
cogl_clear depends on the default CoglContext which we are trying to
steer the API away from requiring. cogl_framebuffer_clear4f is
explicitly passed a framebuffer pointer which is implicitly related to a
specific context.
This updates all the examples to use cogl_framebuffer_clear4f instead of
cogl_clear and removes any redundant CoglColor that was previously
passed to cogl_clear.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
It used to be that cogl_framebuffer_allocate() had to be done explicitly
but we have since made Cogl lazily allocate framebuffers when they are
first used if they haven't already been explicitly allocated. Developers
only need to explicitly allocate framebuffers if they are planning to
gracefully handle any errors. In cases where the program will simply
abort due to an allocation error they can simply rely on implicit
allocation which will cause an abort on error.
This updates the examples to not explicitly allocate the framebuffers
since they all just abort on error anyway.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
The shm buffer format enum values were renamed and the explicitly
premultiplied format was dropped since it's now assumed if the buffer
has an alpha component then it's premultiplied.
If the swap buffers notify mechanism is advertised then the crate
example will now register a callback for it and call g_poll with the
proper timeout from cogl_context_begin_idle instead of trying to
repaint continuously.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
The aim is that it should be a requirement that all Cogl applications
hook their mainloops into Cogl so we should lead by examples. Most of
the examples now just call cogl_poll_get_info and then g_poll with a
zero timeout so that they can continue to constantly redraw.
The SDL example is a bit special because SDL makes it very difficult
to wait on either a timeout or any file descriptors. The SDL winsys is
documented not to require blocking on any file descriptors so we can
ignore that. It implements the timeout by adding an SDL timer which
pushes an event to the queue to wake up SDL_GetEvent.
The Cogland example was already using the glib main loop so that one
has been updated to add the CoglGLibSource to it.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
This adds a simple example based on the hello example but that forces
the SDL winsys and listens for mouse motion events to move the
triangle.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
If a frame callback is destroyed before it is invoked then the struct
would be freed but it would not be removed from the array of callbacks
so when cogland later tried to emit the callback it would crash. This
patch instead stores the callbacks in a GQueue with embedded list
nodes so that they can be removed from the list in the resource
destructor. That way it doesn't matter how the resource is destroyed,
it will still get removed from the list.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
Wayland has changed so that the shell interface now only has one
function which returns a shell surface for the surface. This patch
makes it create a dummy service in the same way that the wayland demo
compositor does. The implementation of the shell_surface_interface for
that dummy service is all no-ops.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
This updates the cogland Wayland compositor example with is an extremely
minimal Wayland compositor. It demonstrates a multi(4)-head compositor
whereby client buffers are simply stretched to cover all outputs. No
input or shell features are implemented since it's really only for
demonstrating the use of Cogl.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
The size of the framebuffer may not be the size of the framebuffer that we
requested - we should use the actual size of the framebuffer in the
calculations to position the crate in the center.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
Xlib headers define many trivially named objects which can later cause
name collision problems when only cogl.h header is included in a program
or library. Xlib headers are now only included through including the
standalone header cogl-xlib.h.
https://bugzilla.gnome.org/show_bug.cgi?id=661174
Reviewed-by: Robert Bragg <robert@linux.intel.com>
It could be nice to extend this as Cogl gains more APIs for
introspecting its own features but for now cogl-info just uses the new
cogl_foreach_feature() API to enumerate the available features for
a default context and prints those to the terminal.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This adds a very basic test of onscreen and offscreen multisample
rendering with 4 samples per pixel. The test simply draws two triangles;
the one on the left is rendered directly to the onscreen framebuffer and
the other is first rendered offscreen before copying it onscreen.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
Previously the crate example incremented the angle of rotation of the
cube every frame so depending on the framerate the cube might rotate
too fast to see. This just changes it to calculate the rotation based
on the elapsed time using a GTimer. The rate that frames are drawn is
unaffected.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
This namespaces all of the examples and marks them for installation
if --enable-examples-install has been passed to ./configure. This
simplifies packaging the examples which can be quite convenient
for smoke testing Cogl on various platform.
https://bugzilla.gnome.org/show_bug.cgi?id=656755
Reviewed-by: Neil Roberts <neil@linux.intel.com>
G_DISABLE_DEPRECATED is only intended for developers of Cogl and it
sometimes breaks the build for people just trying to build a
release. This patch adds an option to enable deprecated Glib
features. By default it is enabled for non-git versions of Cogl.
The patch is based on similar code in Clutter except it adds the flags
to COGL_EXTRA_CFLAGS instead of having a separate variable.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
As part of the on going, incremental effort to purge the non type safe
CoglHandle type from the Cogl API this patch tackles most of the
CoglHandle uses relating to textures.
We'd postponed making this change for quite a while because we wanted to
have a clearer understanding of how we wanted to evolve the texture APIs
towards Cogl 2.0 before exposing type safety here which would be
difficult to change later since it would imply breaking APIs.
The basic idea that we are steering towards now is that CoglTexture
can be considered to be the most primitive interface we have for any
object representing a texture. The texture interface would provide
roughly these methods:
cogl_texture_get_width
cogl_texture_get_height
cogl_texture_can_repeat
cogl_texture_can_mipmap
cogl_texture_generate_mipmap;
cogl_texture_get_format
cogl_texture_set_region
cogl_texture_get_region
Besides the texture interface we will then start to expose types
corresponding to specific texture types: CoglTexture2D,
CoglTexture3D, CoglTexture2DSliced, CoglSubTexture, CoglAtlasTexture and
CoglTexturePixmapX11.
We will then also expose an interface for the high-level texture types
we have (such as CoglTexture2DSlice, CoglSubTexture and
CoglAtlasTexture) called CoglMetaTexture. CoglMetaTexture is an
additional interface that lets you iterate a virtual region of a meta
texture and get mappings of primitive textures to sub-regions of that
virtual region. Internally we already have this kind of abstraction for
dealing with sliced texture, sub-textures and atlas textures in a
consistent way, so this will just make that abstraction public. The aim
here is to clarify that there is a difference between primitive textures
(CoglTexture2D/3D) and some of the other high-level textures, and also
enable developers to implement primitives that can support meta textures
since they can only be used with the cogl_rectangle API currently.
The thing that's not so clean-cut with this are the texture constructors
we have currently; such as cogl_texture_new_from_file which no longer
make sense when CoglTexture is considered to be an interface. These
will basically just become convenient factory functions and it's just a
bit unusual that they are within the cogl_texture namespace. It's worth
noting here that all the texture type APIs will also have their own type
specific constructors so these functions will only be used for the
convenience of being able to create a texture without really wanting to
know the details of what type of texture you need. Longer term for 2.0
we may come up with replacement names for these factory functions or the
other thing we are considering is designing some asynchronous factory
functions instead since it's so often detrimental to application
performance to be blocked waiting for a texture to be uploaded to the
GPU.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
The crate example uses the cogl_pango API and perviously we just
explicitly said to link with the libcogl-pango.la but that doesn't seem
to be enough (not really sure why since libtool should know the required
dependencies to brining in for linking) so we now pass
$(COGL_PANGO_DEP_LIBS) when linking the crate demo.
https://bugzilla.gnome.org/show_bug.cgi?id=656441
When using glib-android, it's not possible to select parts of the
library you want to initialize anymore. Plus it was decided that argc
and argv are useless as you basically don't start applications with
command line arguments on Android.
https://bugzilla.gnome.org/show_bug.cgi?id=655791
Reviewed-by: Robert Bragg <robert@linux.intel.com>
This file is generated by:
android update project -p . -t $i
but it needs to have the name changed to the application name and thus
needs to be checked in.
https://bugzilla.gnome.org/show_bug.cgi?id=655792
Reviewed-by: Robert Bragg <robert@linux.intel.com>
Only cogl-pango needs a dependency on pangocairo so we are now careful to
separate the pangocairo pkg-config flags from the others so we can avoid
having libcogl builds refer to them.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This test wasn't actually explicitly clearing the background to black
it was simply a fluke that some drivers clear the background when
allocating a new framebuffer.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
For cogl 2.0 we don't want to have a default context. In the meantime
we can simply assume that calling cogl_context_new() implicitly
sets that context as the default context before returning.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
There were several CoglOnscreen functions named like:
cogl_onscreen_<platform>_blah instead of cogl_<platform>_onscreen_blah
so this patch updates those to be consistent with other platform
specific apis we have in cogl.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
we've got into a bit of a mess with how we name platform specific
symbols and files, so this is a first pass at trying to tidy that up.
All platform specific symbols should be named like
cogl_<platform>_symbol_name and similarly files should be named like
cogl-<platform>-filename.c
This patch tackles the X11 specific renderer/display APIs as a start.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
This adds Xlib and Win32 typesafe replacements for
cogl_renderer_handle_native_event, cogl_renderer_add_native_filter,
cogl_renderer_remove_native_filter. The old functions are kept as an
implementation detail so we can share code.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
Based on the Cogl example we had on wiki.clutter-project.org this shows
how to use the primitive API to draw a simple spinning crate.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
This update the x11-foreign test so that it checks for events on its X
display and forwards them on to Cogl. It will now also quit if any key
of button is pressed.
The x11-foreign example directly uses the X11 API at it seems that more
recent versions of binutils complain if we don't directly link the test
with libX11 as opposed to relying on indirect linkage via cogl.
This adds an example cogl compositor to test the
_cogl_wayland_texture_2d_new_from_buffer API. The compositor emulates 4
output displays but doesn't support input since Cogl doesn't deal with
input. It's quite a minimal example of what it takes to write a wayland
compositor so could be interesting to anyone learning about wayland.
Actually calling cogl_set_default_context isn't required because
cogl_context_new implicitly sets the new context to be the default
context. Since we want to eventually get rid of the concept of a default
context we'd rather not pollute the example with the concept.
This extends cogl_onscreen_x11_set_foreign_xid to take a callback to a
function that details the event mask the Cogl requires the application
to select on foreign windows. This is required because Cogl, for
example, needs to track size changes of a window and may also in the
future want other notifications such as map/unmap.
Most applications wont need to use the foreign xwindow apis, but those
that do are required to pass a valid callback and update the event mask
of their window according to Cogl's requirements.
This adds Cogl API to show and hide onscreen framebuffers. We don't want
to go too far down the road of abstracting window system APIs with Cogl
since that would be out of its scope but the previous idea that we would
automatically map framebuffers on allocation except for those made from
foreign windows wasn't good enough. The problem is that we don't want to
make Clutter always create stages from foreign windows but with the
automatic map semantics then Clutter doesn't get an opportunity to
select for all the events it requires before mapping. This meant that we
wouldn't be delivered a mouse enter event for windows mapped underneath
the cursor which would break Clutters handling of button press events.
This adds a simple standalone Cogl application that can be used to
smoke test a standalone build of Cogl without Clutter.
This also adds an x11-foreign app that shows how a toolkit can ask Cogl
to draw to an X Window that it owns instead of Cogl being responsible
for automatically creating and mapping an X Window for CoglOnscreen.