Monitor whether UPower is running ourselves. That allows us to keep the
same value for "lid-is-closed" throughout the process of UPower
restarting, preventing unwanted monitor re-configuration through the process.
Fixes another screen black out when UPower restarts and the laptop lid
is closed.
Rather than handle UpClient in both MetaBackend (to reset the idletime
when the lid is opened), and in MetaMonitorManager and
MetaMonitorConfigManager (to turn the screen under the lid on/off
depending on its status), move the ability to get the lid status from
UPower or mock it in one place, in MetaBackend.
Restarting UPower will make every property of UpClient emit a "notify"
signal (as a GDBusProxy would). Avoid mutter reconfiguring the displays
when upower restarts by caching the last known value of "lid-is-closed"
and only reconfiguring the displays if it actually changed.
This fixes a black out of the screen when UPower restarts.
The framerate for screen cast sources was set to variable within 1 FPS
and the framerate of the monitor being screen casted. This meant that if
the sink didn't match the framerate (e.g. had a lower max framerate),
the formats would not match and a stream would not be established.
Allow letting the sink clamp the framerate range by setting it as
'unset', allowing it to be negotiated.
The PipeWire master branch saw some backports from the work branch,
including API changes making the 0.1 series more aligned with future
plans. Make mutter use the new API. This is needed to avoid dead locks
that existed in the older version.
Force update the cursor renderer after theme or size changes; otherwise
we'll be stuck with the old theme and/or size until something else
triggers resetting of the cursor.
- Stop using CurrentTime, introduce META_CURRENT_TIME
- Use g_get_monotonic_time () instead of relying on an
X server running and making roundtrip to it
https://bugzilla.gnome.org/show_bug.cgi?id=759538
They are X11 specific functions, used for X11 code. They have been
improved per jadahl's suggestion to use gdk_x11_lookup_xdisplay and
gdk_x11_display_error_trap_* functions, instead of current code.
https://bugzilla.gnome.org/show_bug.cgi?id=759538
- Moved xdisplay, name and various atoms from MetaDisplay
- Moved xroot, screen_name, default_depth and default_xvisual
from MetaScreen
- Moved some X11 specific functions from screen.c and display.c
to meta-x11-display.c
https://bugzilla.gnome.org/show_bug.cgi?id=759538
Make it so that each logical monitor has a reference to all the
monitors that are assigned to it.
All monitors has a reference to each output that belongs to it.
Each output has a reference to any CRTC it has been assigned.
https://bugzilla.gnome.org/show_bug.cgi?id=786929
For some reason "backends: Remove X11 idle-monitor backend" removed
unrelated warning messages for when generated monitor configurations
that should work didn't, which also made the unit tests fail.
This commit adds them back, which also makes the tests pass again.
Commit 712ec30cd9 added the logic to only
choose EGL configs that match the GBM_FORMAT_XRGB8888 pixel format.
However, there won't be any EGL config satisfying such criteria for
non-GBM backends, such as EGLDevice.
This change will let us choose the first EGL config for the EGLDevice
backend, while still forcing GBM_FORMAT_XRGB8888 configs for the GBM
one.
Related to: https://gitlab.gnome.org/GNOME/mutter/issues/2
Where to realize a hardware cursor depends on where on the screen it
will be displayed. For example it only needs buffers for the cursor
plane on a certain GPU if it overlaps with a monitor that is connected
said GPU.
Previously, we were too eager with uploading the cursor plane buffers,
which in effect resulted in the secondary GPU always being woken up
when changing the cursor, even though the cursor plane would actually
never be set unless the pointer cursor was moved to a monitor connected
to the secondary GPU. These wake-ups caused noticable stuttering; thus
by uploading the buffers more lazilly, the stuttering is avoided.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/77
When a cursor is hidden, the native backend will properly hide the HW
cursor sprite as well, but it would communicate this as if the cursor
was not handled by the backend, while in fact it still was. This caused
the generic cursor rendering layer to queue a redraw.
https://gitlab.gnome.org/GNOME/mutter/issues/77
When force-updating the HW state we might end up with a situation where
the HW cursor is no longer usable. If this would happen, we'd before
this commit not trigger the fallback paths using a GL texture.
https://gitlab.gnome.org/GNOME/mutter/issues/77
It is already handled by the monitor-updated-internal signal handler in
meta-cursor-renderer-native.c, which will always be called indirectly
by resuming the monitor manager.
While at it, remove a useless comment.
https://gitlab.gnome.org/GNOME/mutter/issues/77
Call it meta_cursor_renderer_update_cursor. This avoids confusing it
with the update_cursor MetaCursorRendererClass vfunc when navigating
the file.
https://gitlab.gnome.org/GNOME/mutter/issues/77
It knows better when it's needed. For now, just do it just as before,
before drawing. Eventually, we can conditionalize where to realize
depending on the cursor sprite position.
https://gitlab.gnome.org/GNOME/mutter/issues/77
Use a common entry point into the cursor renderer implementations HW
cursor realization paths for all cursor sprite types. This is in
preparation for realizing at more strategic times.
https://gitlab.gnome.org/GNOME/mutter/issues/77
The end goal here is to being able to realize at any point in time
through a single API, so start by moving state into the cursor sprite
implementation.
https://gitlab.gnome.org/GNOME/mutter/issues/77
Remove some X11 compositing manager specific code from the general
purpose cursor tracker into a new MetaCursorSprite based special
purpose XFIXES cursor sprite.
https://gitlab.gnome.org/GNOME/mutter/issues/77
Introduce a new type MetaCursorSpriteXcursor that is a MetaCursorSprite
implementation backed by Xcursor images. A plain MetaCursorSprite can
still be created "bare bone", but must be manually provided with a
texture. These usages will eventually be wrapped into new
MetaCursorSprite types while turning MetaCursorSprite into an abstract
type.
https://gitlab.gnome.org/GNOME/mutter/issues/77
It was prefixed with meta_cursor_, but it took a X11 Display, so update
the naming. Eventually it should be duplicated depending if it's a
frontend X11 connection call or a backend X11 connection call and moved
to the corresponding layers, but let's just do this minor cleanup for
now.
https://gitlab.gnome.org/GNOME/mutter/issues/77
This makes it possible to move out backing store specific code (such as
Xcursor handling) to separate units, while also making it easier to add
more types).
https://gitlab.gnome.org/GNOME/mutter/issues/77
drmModeAddFB2 allows userspace to specify a real format enum on
non-ancient kernels, as an improvement over the legacy drmModeAddFB
which derives format from a fixed depth/bpp mapping.
As an optimisation, Weston used to decide at the first failure of
drmModeAddFB2 that the ioctl was unavailable: as non-existent DRM
ioctls return -EINVAL rather than -ENOSYS or similar, bad parameters are
not distinguishable from the ioctl not being present.
Mutter has also implemented the same optimisation for dumb framebuffers,
which potentially papers over errors for the gain of avoiding one ioctl
which will rapidly fail on ancient kernels. Remove the optimisation and
always use AddFB2 where possible.
Closes: #14
When using the EGLStream backend, the MetaRendererNative passed a
GClosure to KMS when using EGLStreams, but KMS flip callback event
handler in meta-gpu-kms.c expected a closure wrapped in a closure
container, meaning it'd instead crash when using EGLStreams. Make the
flip handler get what it expects also when using EGLStreams by wrapping
the flip closure in the container before handing it over to EGL.
https://bugzilla.gnome.org/show_bug.cgi?id=790316