With the recent change to internal floating point values, ClutterUnit
has become a redundant type, defined to be a float. All integer entry
points are being internally converted to floating point values to be
passed to the GL pipeline with the least amount of conversion.
ClutterUnit is thus exposed as just a "pixel with fractionary bits",
and not -- as users might think -- as generic, resolution and device
independent units. not that it was the case, but a definitive amount
of people was convinced it did provide this "feature", and was flummoxed
about the mere existence of this type.
So, having ClutterUnit exposed in the public API doubles the entry
points and has the following disadvantages:
- we have to maintain twice the amount of entry points in ClutterActor
- we still do an integer-to-float implicit conversion
- we introduce a weird impedance between pixels and "pixels with
fractionary bits"
- language bindings will have to choose what to bind, and resort
to manually overriding the API
+ *except* for language bindings based on GObject-Introspection, as
they cannot do manual overrides, thus will replicate the entire
set of entry points
For these reason, we should coalesces every Actor entry point for
pixels and for ClutterUnit into a single entry point taking a float,
like:
void clutter_actor_set_x (ClutterActor *self,
gfloat x);
void clutter_actor_get_size (ClutterActor *self,
gfloat *width,
gfloat *height);
gfloat clutter_actor_get_height (ClutterActor *self);
etc.
The issues I have identified are:
- we'll have a two cases of compiler warnings:
- printf() format of the return values from %d to %f
- clutter_actor_get_size() taking floats instead of unsigned ints
- we'll have a problem with varargs when passing an integer instead
of a floating point value, except on 64bit platforms where the
size of a float is the same as the size of an int
To be clear: the *intent* of the API should not change -- we still use
pixels everywhere -- but:
- we remove ambiguity in the API with regard to pixels and units
- we remove entry points we get to maintain for the whole 1.0
version of the API
- we make things simpler to bind for both manual language bindings
and automatic (gobject-introspection based) ones
- we have the simplest API possible while still exposing the
capabilities of the underlying GL implementation
* clutter/osx/clutter-osx.h (_clutter_event_osx_put)
* clutter/osx/clutter-event-osx.c (clutter_event_osx_translate,
NSEvent:clutterStage:)
* clutter/osx/clutter-stage-osx.c (EVENT_HANDLER): Since events are
delivered to ClutterGLView, pass the associated ClutterStage directly
to event translation. Avoids relying on being embedded in
ClutterGLWindow, which makes it easier to implement clutter-gtk.
Bug #911 - OSX: add multistage support
* clutter/osx/clutter-backend-osx.{c,h}
(clutter_backend_osx_init_stage, clutter_backend_osx_get_stage,
clutter_backend_osx_redraw, clutter_backend_osx_create_stage,
clutter_backend_osx_ensure_context, clutter_backend_osx_class_init,
clutter_backend_osx_dispose, ClutterGLView:drawRect:):
* clutter/osx/clutter-stage-osx.{c,h} (clutter_stage_osx_realize,
ClutterGLWindow:setFrameSize:):
Adapt to new multistage backend API. Don't keep a pointer to
default stage. Derive from ClutterActor instead of ClutterStage.
Implement ClutterStageWindow interface. Paint, resize and
otherwise manipulate the wrapper rather than self when necessary.
(clutter_backend_post_parse): Create our singleton GL context
here. We could probably create the context when the default
stage is created, but I think this is more clean.
* clutter/osx/clutter-event-osx.c (clutter_event_osx_translate)
* clutter/osx/clutter-stage-osx.c (clutter_stage_osx_state_update,
ClutterGLWindow:windowShouldClose:):
* clutter/osx/clutter-stage-osx.h: Export ClutterGLWindow interface
for clutter-event-osx.c to easily get the stage for NSWindow.
Fill in ClutterEventAny::stage on our events.
Consistently use 'stage_osx' and 'wrapper' as variable names
when referring to ClutterStageOSX and ClutterStage objects
respectively.
* clutter/clutter-actor.c:
(clutter_actor_real_show),
(clutter_actor_real_hide): Do not set the MAPPED flag on the actor
if it is a top-level one (like ClutterStage); the backends are
responsible for setting that flag, as it might be the result of an
asynchronous operation (e.g. on X11).
* clutter/eglnative/clutter-stage-egl.c:
(clutter_stage_egl_show),
(clutter_stage_egl_hide): Set/unset the CLUTTER_ACTOR_MAPPED flag
on show and hide respectively.
* clutter/osx/clutter-stage-osx.c:
(clutter_stage_osx_show),
(clutter_stage_osx_hide): Ditto as above.
* clutter/sdl/clutter-stage-sdl.c:
(clutter_stage_sdl_show),
(clutter_stage_sdl_hide): Ditto as above, plus chain up to the
parent class show/hide virtual functions.
* clutter/x11/clutter-event-x11.c (event_translate): Use the MapNotify
and UnmapNotify events to call the X11 stage map/unmap functions.
* clutter/x11/clutter-stage-x11.[ch]:
(clutter_stage_x11_set_fullscreen): Set the fullscreen_on_map flag
with the fullscreen value.
(clutter_stage_x11_map), (clutter_stage_x11_unmap): Set the MAPPED
flag on the stage actor and redraw; also, if the fullscreen_on_map
flag was set, call clutter_stage_fullscreen() as well. (#648)
* tests/Makefile.am:
* tests/test-fullscreen.c: Add a fullscreen test case for checking
whether fullscreen works on every backend/platform.