clutter/util: Remove unused functions

After transitioning to purely graphene-based matrix interpolation,
these functions are unused.

https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1439
This commit is contained in:
Georges Basile Stavracas Neto 2020-09-09 20:14:05 -03:00
parent 8fc3d296b6
commit e06139323b
2 changed files with 0 additions and 279 deletions

View File

@ -239,15 +239,6 @@ gboolean _clutter_util_rectangle_intersection (const cairo_rectangle_int_t *src1
gboolean clutter_util_rectangle_equal (const cairo_rectangle_int_t *src1,
const cairo_rectangle_int_t *src2);
float _clutter_util_matrix_determinant (const CoglMatrix *matrix);
gboolean _clutter_util_matrix_decompose (const CoglMatrix *src,
graphene_point3d_t *scale_p,
float shear_p[3],
graphene_point3d_t *rotate_p,
graphene_point3d_t *translate_p,
graphene_vec4_t *perspective_p);
CLUTTER_EXPORT
PangoDirection _clutter_pango_unichar_direction (gunichar ch);

View File

@ -238,276 +238,6 @@ clutter_util_rectangle_equal (const cairo_rectangle_int_t *src1,
(src1->height == src2->height));
}
float
_clutter_util_matrix_determinant (const CoglMatrix *matrix)
{
return matrix->xw * matrix->yz * matrix->zy * matrix->wz
- matrix->xz * matrix->yw * matrix->zy * matrix->wz
- matrix->xw * matrix->yy * matrix->zz * matrix->wz
+ matrix->xy * matrix->yw * matrix->zz * matrix->wz
+ matrix->xz * matrix->yy * matrix->zw * matrix->wz
- matrix->xy * matrix->yz * matrix->zw * matrix->wz
- matrix->xw * matrix->yz * matrix->zx * matrix->wy
+ matrix->xz * matrix->yw * matrix->zx * matrix->wy
+ matrix->xw * matrix->yx * matrix->zz * matrix->wy
- matrix->xx * matrix->yw * matrix->zz * matrix->wy
- matrix->xz * matrix->yx * matrix->zw * matrix->wy
+ matrix->xx * matrix->yz * matrix->zw * matrix->wy
+ matrix->xw * matrix->yy * matrix->zx * matrix->wz
- matrix->xy * matrix->yw * matrix->zx * matrix->wz
- matrix->xw * matrix->yx * matrix->zy * matrix->wz
+ matrix->xx * matrix->yw * matrix->zy * matrix->wz
+ matrix->xy * matrix->yx * matrix->zw * matrix->wz
- matrix->xx * matrix->yy * matrix->zw * matrix->wz
- matrix->xz * matrix->yy * matrix->zx * matrix->ww
+ matrix->xy * matrix->yz * matrix->zx * matrix->ww
+ matrix->xz * matrix->yx * matrix->zy * matrix->ww
- matrix->xx * matrix->yz * matrix->zy * matrix->ww
- matrix->xy * matrix->yx * matrix->zz * matrix->ww
+ matrix->xx * matrix->yy * matrix->zz * matrix->ww;
}
static void
_clutter_util_matrix_transpose_vector4_transform (const CoglMatrix *matrix,
const graphene_vec4_t *point,
graphene_vec4_t *res)
{
float point_x, point_y, point_z, point_w;
float x, y, z, w;
point_x = graphene_vec4_get_x (point);
point_y = graphene_vec4_get_y (point);
point_z = graphene_vec4_get_z (point);
point_w = graphene_vec4_get_w (point);
x = matrix->xx * point_x
+ matrix->xy * point_y
+ matrix->xz * point_z
+ matrix->xw * point_w;
y = matrix->yx * point_x
+ matrix->yy * point_y
+ matrix->yz * point_z
+ matrix->yw * point_w;
z = matrix->zx * point_x
+ matrix->zy * point_y
+ matrix->zz * point_z
+ matrix->zw * point_w;
w = matrix->wz * point_x
+ matrix->wy * point_w
+ matrix->wz * point_z
+ matrix->ww * point_w;
graphene_vec4_init (res, x, y, z, w);
}
static void
_clutter_util_vertex_combine (const graphene_point3d_t *a,
const graphene_point3d_t *b,
double ascl,
double bscl,
graphene_point3d_t *res)
{
res->x = (ascl * a->x) + (bscl * b->x);
res->y = (ascl * a->y) + (bscl * b->y);
res->z = (ascl * a->z) + (bscl * b->z);
}
/*< private >
* clutter_util_matrix_decompose:
* @src: the matrix to decompose
* @scale_p: (out caller-allocates): return location for a vertex containing
* the scaling factors
* @shear_p: (out) (array length=3): return location for an array of 3
* elements containing the skew factors (XY, XZ, and YZ respectively)
* @rotate_p: (out caller-allocates): return location for a vertex containing
* the Euler angles
* @translate_p: (out caller-allocates): return location for a vertex
* containing the translation vector
* @perspective_p: (out caller-allocates: return location for a 4D vertex
* containing the perspective
*
* Decomposes a #CoglMatrix into the transformations that compose it.
*
* This code is based on the matrix decomposition algorithm as published in
* the CSS Transforms specification by the W3C CSS working group, available
* at http://www.w3.org/TR/css3-transforms/.
*
* The algorithm, in turn, is based on the "unmatrix" method published in
* "Graphics Gems II, edited by Jim Arvo", which is available at:
* http://tog.acm.org/resources/GraphicsGems/gemsii/unmatrix.c
*
* Return value: %TRUE if the decomposition was successful, and %FALSE
* if the matrix is singular
*/
gboolean
_clutter_util_matrix_decompose (const CoglMatrix *src,
graphene_point3d_t *scale_p,
float shear_p[3],
graphene_point3d_t *rotate_p,
graphene_point3d_t *translate_p,
graphene_vec4_t *perspective_p)
{
CoglMatrix matrix = *src;
CoglMatrix perspective;
graphene_vec4_t vertex_tmp;
graphene_point3d_t row[3], pdum;
int i, j;
#define XY_SHEAR 0
#define XZ_SHEAR 1
#define YZ_SHEAR 2
#define MAT(m,r,c) ((float *)(m))[(c) * 4 + (r)]
/* normalize the matrix */
if (matrix.ww == 0.f)
return FALSE;
for (i = 0; i < 4; i++)
{
for (j = 0; j < 4; j++)
{
MAT (&matrix, j, i) /= MAT (&matrix, 3, 3);
}
}
/* perspective is used to solve for perspective, but it also provides
* an easy way to test for singularity of the upper 3x3 component
*/
perspective = matrix;
/* transpose */
MAT (&perspective, 3, 0) = 0.f;
MAT (&perspective, 3, 1) = 0.f;
MAT (&perspective, 3, 2) = 0.f;
MAT (&perspective, 3, 3) = 1.f;
if (_clutter_util_matrix_determinant (&perspective) == 0.f)
return FALSE;
if (MAT (&matrix, 3, 0) != 0.f ||
MAT (&matrix, 3, 1) != 0.f ||
MAT (&matrix, 3, 2) != 0.f)
{
CoglMatrix perspective_inv;
graphene_vec4_t p;
graphene_vec4_init (&vertex_tmp,
MAT (&matrix, 3, 0),
MAT (&matrix, 3, 1),
MAT (&matrix, 3, 2),
MAT (&matrix, 3, 3));
/* solve the equation by inverting perspective... */
cogl_matrix_get_inverse (&perspective, &perspective_inv);
/* ... and multiplying vertex_tmp by the inverse */
_clutter_util_matrix_transpose_vector4_transform (&perspective_inv,
&vertex_tmp,
&p);
*perspective_p = p;
/* clear the perspective part */
MAT (&matrix, 3, 0) = 0.0f;
MAT (&matrix, 3, 1) = 0.0f;
MAT (&matrix, 3, 2) = 0.0f;
MAT (&matrix, 3, 3) = 1.0f;
}
else
{
/* no perspective */
graphene_vec4_init_from_vec4 (perspective_p, graphene_vec4_zero ());
}
/* translation */
translate_p->x = MAT (&matrix, 0, 3);
MAT (&matrix, 0, 3) = 0.f;
translate_p->y = MAT (&matrix, 1, 3);
MAT (&matrix, 1, 3) = 0.f;
translate_p->z = MAT (&matrix, 2, 3);
MAT (&matrix, 2, 3) = 0.f;
/* scale and shear; we split the upper 3x3 matrix into rows */
for (i = 0; i < 3; i++)
{
row[i].x = MAT (&matrix, i, 0);
row[i].y = MAT (&matrix, i, 1);
row[i].z = MAT (&matrix, i, 2);
}
/* compute scale.x and normalize the first row */
scale_p->x = graphene_point3d_length (&row[0]);
graphene_point3d_normalize (&row[0], &row[0]);
/* compute XY shear and make the second row orthogonal to the first */
shear_p[XY_SHEAR] = graphene_point3d_dot (&row[0], &row[1]);
_clutter_util_vertex_combine (&row[1], &row[0],
1.0, -shear_p[XY_SHEAR],
&row[1]);
/* compute the Y scale and normalize the second row */
scale_p->y = graphene_point3d_length (&row[1]);
graphene_point3d_normalize (&row[1], &row[1]);
shear_p[XY_SHEAR] /= scale_p->y;
/* compute XZ and YZ shears, orthogonalize the third row */
shear_p[XZ_SHEAR] = graphene_point3d_dot (&row[0], &row[2]);
_clutter_util_vertex_combine (&row[2], &row[0],
1.0, -shear_p[XZ_SHEAR],
&row[2]);
shear_p[YZ_SHEAR] = graphene_point3d_dot (&row[1], &row[2]);
_clutter_util_vertex_combine (&row[2], &row[1],
1.0, -shear_p[YZ_SHEAR],
&row[2]);
/* get the Z scale and normalize the third row*/
scale_p->z = graphene_point3d_length (&row[2]);
graphene_point3d_normalize (&row[2], &row[2]);
shear_p[XZ_SHEAR] /= scale_p->z;
shear_p[YZ_SHEAR] /= scale_p->z;
/* at this point, the matrix (inside row[]) is orthonormal.
* check for a coordinate system flip; if the determinant
* is -1, then negate the matrix and scaling factors
*/
graphene_point3d_cross (&row[1], &row[2], &pdum);
if (graphene_point3d_dot (&row[0], &pdum) < 0.f)
{
scale_p->x *= -1.f;
for (i = 0; i < 3; i++)
{
row[i].x *= -1.f;
row[i].y *= -1.f;
row[i].z *= -1.f;
}
}
/* now get the rotations out */
rotate_p->y = asinf (-row[0].z);
if (cosf (rotate_p->y) != 0.f)
{
rotate_p->x = atan2f (row[1].z, row[2].z);
rotate_p->z = atan2f (row[0].y, row[0].x);
}
else
{
rotate_p->x = atan2f (-row[2].x, row[1].y);
rotate_p->z = 0.f;
}
#undef XY_SHEAR
#undef XZ_SHEAR
#undef YZ_SHEAR
#undef MAT
return TRUE;
}
typedef struct
{
GType value_type;