Remove unused CBZ_L2T_INTERPOLATION

Never used in mutter AFAICT.

Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3178>
This commit is contained in:
Michel Dänzer 2023-08-10 15:26:19 +02:00 committed by Marge Bot
parent e00424f4dd
commit d2058255b3

View File

@ -29,12 +29,6 @@
#include "clutter/clutter-bezier.h"
#include "clutter/clutter-debug.h"
/*
* We have some experimental code here to allow for constant velocity
* movement of actors along the bezier path, this macro enables it.
*/
#undef CBZ_L2T_INTERPOLATION
/****************************************************************************
* ClutterBezier -- representation of a cubic bezier curve *
* (private; a building block for the public bspline object) *
@ -87,19 +81,6 @@ struct _ClutterBezier
/* length of the bezier */
guint length;
#ifdef CBZ_L2T_INTERPOLATION
/*
* coefficients for the L -> t bezier; these are calculated from fixed
* point input, and more specifically numbers that have been normalised
* to fit <0,1>, so these are also fixed point, and we can used the
* _FixedT type here.
*/
_FixedT La;
_FixedT Lb;
_FixedT Lc;
/* _FixedT Ld; == 0 */
#endif
};
ClutterBezier *
@ -117,26 +98,6 @@ _clutter_bezier_free (ClutterBezier * b)
}
}
#ifdef CBZ_L2T_INTERPOLATION
/*
* L is relative advance along the bezier curve from interval <0,1>
*/
static _FixedT
_clutter_bezier_L2t (const ClutterBezier *b, _FixedT L)
{
_FixedT t = CBZ_T_MUL (b->La, CBZ_T_POW3(L))
+ CBZ_T_MUL (b->Lb, CBZ_T_POW2(L))
+ CBZ_T_MUL (b->Lc, L);
if (t > CBZ_T_ONE)
t = CBZ_T_ONE;
else if (t < 0)
t = 0;
return t;
}
#endif
static gint
_clutter_bezier_t2x (const ClutterBezier * b, _FixedT t)
{
@ -166,11 +127,7 @@ _clutter_bezier_t2y (const ClutterBezier * b, _FixedT t)
void
_clutter_bezier_advance (const ClutterBezier *b, gint L, ClutterKnot * knot)
{
#ifdef CBZ_L2T_INTERPOLATION
_FixedT t = clutter_bezier_L2t (b, L);
#else
_FixedT t = L;
#endif
knot->x = _clutter_bezier_t2x (b, t);
knot->y = _clutter_bezier_t2y (b, t);
@ -278,12 +235,6 @@ _clutter_bezier_init (ClutterBezier *b,
int yp = y_0;
_FixedT length [CBZ_T_SAMPLES + 1];
#ifdef CBZ_L2T_INTERPOLATION
int j, k;
_FixedT L;
_FixedT t_equalized [CBZ_T_SAMPLES + 1];
#endif
#if 0
g_debug ("Initializing bezier at {{%d,%d},{%d,%d},{%d,%d},{%d,%d}}",
x0, y0, x1, y1, x2, y2, x3, y3);
@ -344,128 +295,6 @@ _clutter_bezier_init (ClutterBezier *b,
#if 0
g_debug ("length %d", b->length);
#endif
#ifdef CBZ_L2T_INTERPOLATION
/*
* Now normalize the length values, converting them into _FixedT
*/
for (i = 0; i <= CBZ_T_SAMPLES; ++i)
{
length[i] = (length[i] << CBZ_T_Q) / b->length;
}
/*
* Now generate a L -> t table such that the L will equidistant
* over <0,1>
*/
t_equalized[0] = 0;
for (i = 1, j = 1, L = CBZ_L_STEP; i < CBZ_T_SAMPLES; ++i, L += CBZ_L_STEP)
{
_FixedT l1, l2;
_FixedT d1, d2, d;
_FixedT t1, t2;
/* find the band for our L */
for (k = j; k < CBZ_T_SAMPLES; ++k)
{
if (L < length[k])
break;
}
/*
* Now we know that L is from (length[k-1],length[k]>
* We remember k-1 in order not to have to iterate over the
* whole length array in the next iteration of the main loop
*/
j = k - 1;
/*
* Now interpolate equlised t as a weighted average
*/
l1 = length[k-1];
l2 = length[k];
d1 = l2 - L;
d2 = L - l1;
d = l2 - l1;
t1 = (k - 1) * CBZ_T_STEP;
t2 = k * CBZ_T_STEP;
t_equalized[i] = (t1*d1 + t2*d2)/d;
if (t_equalized[i] < t_equalized[i-1])
g_debug ("wrong t: L %f, l1 %f, l2 %f, t1 %f, t2 %f",
(double) (L)/(double)CBZ_T_ONE,
(double) (l1)/(double)CBZ_T_ONE,
(double) (l2)/(double)CBZ_T_ONE,
(double) (t1)/(double)CBZ_T_ONE,
(double) (t2)/(double)CBZ_T_ONE);
}
t_equalized[CBZ_T_SAMPLES] = CBZ_T_ONE;
/* We now fit a bezier -- at this stage, do a single fit through our values
* at 0, 1/3, 2/3 and 1
*
* FIXME -- do we need to use a better fitting approach to choose the best
* beziere. The actual curve we acquire this way is not too bad shapwise,
* but (probably due to rounding errors) the resulting curve no longer
* satisfies the necessary condition that for L2 > L1, t2 > t1, which
* causes oscilation.
*/
#if 0
/*
* These are the control points we use to calculate the curve coefficients
* for bezier t(L); these are not needed directly, but are implied in the
* calculations below.
*
* (p0 is 0,0, and p3 is 1,1)
*/
p1 = (18 * t_equalized[CBZ_T_SAMPLES/3] -
9 * t_equalized[2*CBZ_T_SAMPLES/3] +
2 << CBZ_T_Q) / 6;
p2 = (18 * t_equalized[2*CBZ_T_SAMPLES/3] -
9 * t_equalized[CBZ_T_SAMPLES/3] -
(5 << CBZ_T_Q)) / 6;
#endif
b->Lc = (18 * t_equalized[CBZ_T_SAMPLES/3] -
9 * t_equalized[2*CBZ_T_SAMPLES/3] +
(2 << CBZ_T_Q)) >> 1;
b->Lb = (36 * t_equalized[2*CBZ_T_SAMPLES/3] -
45 * t_equalized[CBZ_T_SAMPLES/3] -
(9 << CBZ_T_Q)) >> 1;
b->La = ((27 * (t_equalized[CBZ_T_SAMPLES/3] -
t_equalized[2*CBZ_T_SAMPLES/3]) +
(7 << CBZ_T_Q)) >> 1) + CBZ_T_ONE;
g_debug ("t(1/3) %f, t(2/3) %f",
(double)t_equalized[CBZ_T_SAMPLES/3]/(double)CBZ_T_ONE,
(double)t_equalized[2*CBZ_T_SAMPLES/3]/(double)CBZ_T_ONE);
g_debug ("L -> t coefficients: %f, %f, %f",
(double)b->La/(double)CBZ_T_ONE,
(double)b->Lb/(double)CBZ_T_ONE,
(double)b->Lc/(double)CBZ_T_ONE);
/*
* For debugging, you can load these values into a spreadsheet and graph
* them to see how well the approximation matches the data
*/
for (i = 0; i < CBZ_T_SAMPLES; ++i)
{
g_print ("%f, %f, %f\n",
(double)(i*CBZ_T_STEP)/(double)CBZ_T_ONE,
(double)(t_equalized[i])/(double)CBZ_T_ONE,
(double)(clutter_bezier_L2t(b,i*CBZ_T_STEP))/(double)CBZ_T_ONE);
}
#endif
}
guint