backends/native: Restore the ClutterBezier code to here

The ClutterBezier code was removed in
    580d62b9b clutter: Remove unused Path related types
because it wasn't used anywhere. We do need a bezier curve for the
tablet tool pressure curve calculation though so let's move it
to the native backend and rename it to MetaBezier in the process.

Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3399>
This commit is contained in:
Peter Hutterer 2023-12-11 15:46:16 +10:00 committed by Marge Bot
parent 985e93f9fa
commit 414357a70f
3 changed files with 362 additions and 0 deletions

View File

@ -0,0 +1,301 @@
/*
* Authored By Tomas Frydrych <tf@openedhand.com>
*
* Copyright (C) 2007 OpenedHand
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <glib.h>
#include <string.h>
#include "meta-bezier.h"
/****************************************************************************
* MetaBezier -- representation of a cubic bezier curve *
* (private; a building block for the public bspline object) *
****************************************************************************/
/*
* The t parameter of the bezier is from interval <0,1>, so we can use
* 14.18 format and special multiplication functions that preserve
* more of the least significant bits but would overflow if the value
* is > 1
*/
#define CBZ_T_Q 18
#define CBZ_T_ONE (1 << CBZ_T_Q)
#define CBZ_T_MUL(x,y) ((((x) >> 3) * ((y) >> 3)) >> 12)
#define CBZ_T_POW2(x) CBZ_T_MUL (x, x)
#define CBZ_T_POW3(x) CBZ_T_MUL (CBZ_T_POW2 (x), x)
#define CBZ_T_DIV(x,y) ((((x) << 9)/(y)) << 9)
/*
* Constants for sampling of the bezier
*/
#define CBZ_T_SAMPLES 128
#define CBZ_T_STEP (CBZ_T_ONE / CBZ_T_SAMPLES)
#define CBZ_L_STEP (CBZ_T_ONE / CBZ_T_SAMPLES)
#define FIXED_BITS (32)
#define FIXED_Q (FIXED_BITS - 16)
#define FIXED_FROM_INT(x) ((x) << FIXED_Q)
typedef gint32 _FixedT;
/*
* This is a private type representing a single cubic bezier
*/
struct _MetaBezier
{
/*
* bezier coefficients -- these are calculated using multiplication and
* addition from integer input, so these are also integers
*/
gint ax;
gint bx;
gint cx;
gint dx;
gint ay;
gint by;
gint cy;
gint dy;
/* length of the bezier */
guint length;
};
MetaBezier *
meta_bezier_new (void)
{
return g_new0 (MetaBezier, 1);
}
void
meta_bezier_free (MetaBezier * b)
{
if (G_LIKELY (b))
{
g_free (b);
}
}
static gint
meta_bezier_t2x (const MetaBezier * b, _FixedT t)
{
/*
* NB -- the int coefficients can be at most 8192 for the multiplication
* to work in this fashion due to the limits of the 14.18 fixed.
*/
return ((b->ax*CBZ_T_POW3(t) + b->bx*CBZ_T_POW2(t) + b->cx*t) >> CBZ_T_Q)
+ b->dx;
}
static gint
meta_bezier_t2y (const MetaBezier * b, _FixedT t)
{
/*
* NB -- the int coefficients can be at most 8192 for the multiplication
* to work in this fashion due to the limits of the 14.18 fixed.
*/
return ((b->ay*CBZ_T_POW3(t) + b->by*CBZ_T_POW2(t) + b->cy*t) >> CBZ_T_Q)
+ b->dy;
}
/*
* Advances along the bezier to relative length L and returns the coordinances
* in knot
*/
void
meta_bezier_advance (const MetaBezier *b, gint L, MetaBezierKnot * knot)
{
_FixedT t = L;
knot->x = meta_bezier_t2x (b, t);
knot->y = meta_bezier_t2y (b, t);
#if 0
g_debug ("advancing to relative pt %f: t %f, {%d,%d}",
(double) L / (double) CBZ_T_ONE,
(double) t / (double) CBZ_T_ONE,
knot->x, knot->y);
#endif
}
static int
sqrti (int number)
{
#if defined __SSE2__
/* The GCC built-in with SSE2 (sqrtsd) is up to twice as fast as
* the pure integer code below. It is also more accurate.
*/
return __builtin_sqrt (number);
#else
/* This is a fixed point implementation of the Quake III sqrt algorithm,
* described, for example, at
* http://www.codemaestro.com/reviews/review00000105.html
*
* While the original QIII is extremely fast, the use of floating division
* and multiplication makes it perform very on arm processors without FPU.
*
* The key to successfully replacing the floating point operations with
* fixed point is in the choice of the fixed point format. The QIII
* algorithm does not calculate the square root, but its reciprocal ('y'
* below), which is only at the end turned to the inverse value. In order
* for the algorithm to produce satisfactory results, the reciprocal value
* must be represented with sufficient precision; the 16.16 we use
* elsewhere in clutter is not good enough, and 10.22 is used instead.
*/
_FixedT x;
uint32_t y_1; /* 10.22 fixed point */
uint32_t f = 0x600000; /* '1.5' as 10.22 fixed */
union
{
float f;
uint32_t i;
} flt, flt2;
flt.f = number;
x = FIXED_FROM_INT (number) / 2;
/* The QIII initial estimate */
flt.i = 0x5f3759df - ( flt.i >> 1 );
/* Now, we convert the float to 10.22 fixed. We exploit the mechanism
* described at http://www.d6.com/users/checker/pdfs/gdmfp.pdf.
*
* We want 22 bit fraction; a single precision float uses 23 bit
* mantisa, so we only need to add 2^(23-22) (no need for the 1.5
* multiplier as we are only dealing with positive numbers).
*
* Note: we have to use two separate variables here -- for some reason,
* if we try to use just the flt variable, gcc on ARM optimises the whole
* addition out, and it all goes pear shape, since without it, the bits
* in the float will not be correctly aligned.
*/
flt2.f = flt.f + 2.0;
flt2.i &= 0x7FFFFF;
/* Now we correct the estimate */
y_1 = (flt2.i >> 11) * (flt2.i >> 11);
y_1 = (y_1 >> 8) * (x >> 8);
y_1 = f - y_1;
flt2.i = (flt2.i >> 11) * (y_1 >> 11);
/* If the original argument is less than 342, we do another
* iteration to improve precision (for arguments >= 342, the single
* iteration produces generally better results).
*/
if (x < 171)
{
y_1 = (flt2.i >> 11) * (flt2.i >> 11);
y_1 = (y_1 >> 8) * (x >> 8);
y_1 = f - y_1;
flt2.i = (flt2.i >> 11) * (y_1 >> 11);
}
/* Invert, round and convert from 10.22 to an integer
* 0x1e3c68 is a magical rounding constant that produces slightly
* better results than 0x200000.
*/
return (number * flt2.i + 0x1e3c68) >> 22;
#endif
}
void
meta_bezier_init (MetaBezier *b,
gint x_0, gint y_0,
gint x_1, gint y_1,
gint x_2, gint y_2,
gint x_3, gint y_3)
{
_FixedT t;
int i;
int xp = x_0;
int yp = y_0;
_FixedT length [CBZ_T_SAMPLES + 1];
#if 0
g_debug ("Initializing bezier at {{%d,%d},{%d,%d},{%d,%d},{%d,%d}}",
x0, y0, x1, y1, x2, y2, x3, y3);
#endif
b->dx = x_0;
b->dy = y_0;
b->cx = 3 * (x_1 - x_0);
b->cy = 3 * (y_1 - y_0);
b->bx = 3 * (x_2 - x_1) - b->cx;
b->by = 3 * (y_2 - y_1) - b->cy;
b->ax = x_3 - 3 * x_2 + 3 * x_1 - x_0;
b->ay = y_3 - 3 * y_2 + 3 * y_1 - y_0;
#if 0
g_debug ("Cooeficients {{%d,%d},{%d,%d},{%d,%d},{%d,%d}}",
b->ax, b->ay, b->bx, b->by, b->cx, b->cy, b->dx, b->dy);
#endif
/*
* Because of the way we do the multiplication in bezeir_t2x,y
* these coefficients need to be at most 0x1fff; this should be the case,
* I think, but have added this warning to catch any problems -- if it
* triggers, we need to change those two functions a bit.
*/
if (b->ax > 0x1fff || b->bx > 0x1fff || b->cx > 0x1fff)
g_warning ("Calculated coefficients will result in multiplication "
"overflow in meta_bezier_t2x and meta_bezier_t2y.");
/*
* Sample the bezier with CBZ_T_SAMPLES and calculate length at
* each point.
*
* We are working with integers here, so we use the fast sqrti function.
*/
length[0] = 0;
for (t = CBZ_T_STEP, i = 1; i <= CBZ_T_SAMPLES; ++i, t += CBZ_T_STEP)
{
int x = meta_bezier_t2x (b, t);
int y = meta_bezier_t2y (b, t);
guint l = sqrti ((y - yp)*(y - yp) + (x - xp)*(x - xp));
l += length[i-1];
length[i] = l;
xp = x;
yp = y;
}
b->length = length[CBZ_T_SAMPLES];
#if 0
g_debug ("length %d", b->length);
#endif
}
guint
meta_bezier_get_length (const MetaBezier *b)
{
return b->length;
}

View File

@ -0,0 +1,59 @@
/*
* Authored By Tomas Frydrych <tf@openedhand.com>
*
* Copyright (C) 2006, 2007 OpenedHand
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <glib.h>
G_BEGIN_DECLS
/* This is used in meta_bezier_advance to represent the full
length of the bezier curve. Anything less than that represents a
fraction of the length */
#define META_BEZIER_MAX_LENGTH (1 << 18)
typedef struct _MetaBezier MetaBezier;
typedef struct _MetaBezierKnot MetaBezierKnot;
struct _MetaBezierKnot
{
gint x;
gint y;
};
MetaBezier *meta_bezier_new (void);
void meta_bezier_free (MetaBezier *b);
void meta_bezier_advance (const MetaBezier *b,
gint L,
MetaBezierKnot *knot);
void meta_bezier_init (MetaBezier *b,
gint x_0, gint y_0,
gint x_1, gint y_1,
gint x_2, gint y_2,
gint x_3, gint y_3);
guint meta_bezier_get_length (const MetaBezier *b);
G_DEFINE_AUTOPTR_CLEANUP_FUNC (MetaBezier, meta_bezier_free);
G_END_DECLS

View File

@ -735,6 +735,8 @@ if have_native_backend
'backends/native/meta-backend-native-types.h',
'backends/native/meta-barrier-native.c',
'backends/native/meta-barrier-native.h',
'backends/native/meta-bezier.c',
'backends/native/meta-bezier.h',
'backends/native/meta-clutter-backend-native.c',
'backends/native/meta-clutter-backend-native.h',
'backends/native/meta-crtc-kms.c',