mutter/common/cogl-vertex-buffer.c

1963 lines
61 KiB
C
Raw Normal View History

/*
* Cogl
*
* An object oriented GL/GLES Abstraction/Utility Layer
*
* Copyright (C) 2008,2009 Intel Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*
* Authors:
* Robert Bragg <robert@linux.intel.com>
*/
/* XXX: For an overview of the functionality implemented here, please
* see cogl-vertex-buffer.h, which contains the gtk-doc section overview
* for the Vertex Buffers API.
*/
/*
* TODO: We need to do a better job of minimizing when we call glVertexPointer
* and pals in enable_state_for_drawing_buffer
*
* We should have an internal 2-tuple cache of (VBO, offset) for each of them
* so we can avoid some GL calls. We could have cogl wrappers for the
* gl*Pointer funcs that look like this:
*
* cogl_vertex_pointer (n_components, gl_type, stride, vbo, offset);
* cogl_color_pointer (n_components, gl_type, stride, vbo, offset);
*
* They would also accept NULL for the VBO handle to support old style vertex
* arrays.
*
* TODO:
* Actually hook this up to the cogl shaders infrastructure. The vertex
* buffer API has been designed to allow adding of arbitrary attributes for use
* with shaders, but this has yet to be actually plumbed together and tested.
* The bits we are missing:
* - cogl_program_use doesn't currently record within ctx-> which program
* is currently in use so a.t.m only Clutter knows the current shader.
* - We don't query the current shader program for the generic vertex indices
* (using glGetAttribLocation) so that we can call glEnableVertexAttribArray
* with those indices.
* (currently we just make up consecutive indices)
* - some dirty flag mechanims to know when the shader program has changed
* so we don't need to re-query it each time we draw a buffer.
*
* TODO:
* There is currently no API for querying back info about a buffer, E.g.:
* cogl_vertex_buffer_get_n_vertices (buffer_handle);
* cogl_vertex_buffer_get_n_components (buffer_handle, "attrib_name");
* cogl_vertex_buffer_get_stride (buffer_handle, "attrib_name");
* cogl_vertex_buffer_get_normalized (buffer_handle, "attrib_name");
* cogl_vertex_buffer_map (buffer_handle, "attrib_name");
* cogl_vertex_buffer_unmap (buffer_handle, "attrib_name");
* (Realistically I wouldn't expect anyone to use such an API to examine the
* contents of a buffer for modification, since you'd need to handle too many
* possibilities, but never the less there might be other value in these.)
* TODO:
* It may be worth exposing the underlying VBOs for some advanced use
* cases, e.g.:
* handle = cogl_vbo_new (COGL_VBO_FLAG_STATIC);
* pointer = cogl_vbo_map (handle, COGL_VBO_FLAG_WRITEONLY);
* cogl_vbo_unmap (handle);
* cogl_vbo_set_data (handle, size, data);
* cogl_vbo_set_sub_data (handle, offset, size, data);
* cogl_vbo_set_usage_hint (COGL_VBO_FLAG_DYNAMIC);
*
* TODO:
* Experiment with wider use of the vertex buffers API internally to Cogl.
* - There is potential, I think, for this API to become a work-horse API
* within COGL for submitting geometry to the GPU, and could unify some of
* the GL/GLES code paths.
* E.g.:
* - Try creating a per-context vertex buffer cache for cogl_texture_rectangle
* to sit on top of.
* - Try saving the tesselation of paths/polygons into vertex buffers
* internally.
*
* TODO
* Expose API that lets developers get back a buffer handle for a particular
* polygon so they may add custom attributes to them.
* - It should be possible to query/modify attributes efficiently, in place,
* avoiding copies. It would not be acceptable to simply require that
* developers must query back the n_vertices of a buffer and then the
* n_components, type and stride etc of each attribute since there
* would be too many combinations to realistically handle.
*
* - In practice, some cases might be best solved with a higher level
* EditableMesh API, (see futher below) but for many cases I think an
* API like this might be appropriate:
*
* cogl_vertex_buffer_foreach_vertex (buffer_handle,
* (AttributesBufferIteratorFunc)callback,
* "gl_Vertex", "gl_Color", NULL);
* static void callback (CoglVertexBufferVertex *vert)
* {
* GLfloat *pos = vert->attrib[0];
* GLubyte *color = vert->attrib[1];
* GLfloat *new_attrib = buf[vert->index];
*
* new_attrib = pos*color;
* }
*
* TODO
* Think about a higher level Mesh API for building/modifying attribute buffers
* - E.g. look at Blender for inspiration here. They can build a mesh from
* "MVert", "MFace" and "MEdge" primitives.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <stdio.h>
#include <string.h>
#include <glib.h>
#include "cogl.h"
#include "cogl-internal.h"
#include "cogl-util.h"
#include "cogl-context.h"
#include "cogl-handle.h"
#include "cogl-vertex-buffer-private.h"
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 16:15:40 +00:00
#include "cogl-texture-private.h"
#include "cogl-material-private.h"
#define PAD_FOR_ALIGNMENT(VAR, TYPE_SIZE) \
(VAR = TYPE_SIZE + ((VAR - 1) & ~(TYPE_SIZE - 1)))
/*
* GL/GLES compatability defines for VBO thingies:
*/
#if defined (HAVE_COGL_GL)
#define glGenBuffers ctx->pf_glGenBuffersARB
#define glBindBuffer ctx->pf_glBindBufferARB
#define glBufferData ctx->pf_glBufferDataARB
#define glBufferSubData ctx->pf_glBufferSubDataARB
#define glDeleteBuffers ctx->pf_glDeleteBuffersARB
#define glMapBuffer ctx->pf_glMapBufferARB
#define glUnmapBuffer ctx->pf_glUnmapBufferARB
#define glActiveTexture ctx->pf_glActiveTexture
#define glClientActiveTexture ctx->pf_glClientActiveTexture
#ifndef GL_ARRAY_BUFFER
#define GL_ARRAY_BUFFER GL_ARRAY_BUFFER_ARB
#endif
#elif defined (HAVE_COGL_GLES2)
#include "../gles/cogl-gles2-wrapper.h"
#endif
/*
* GL/GLES compatability defines for shader things:
*/
#if defined (HAVE_COGL_GL)
#define glVertexAttribPointer ctx->pf_glVertexAttribPointerARB
#define glEnableVertexAttribArray ctx->pf_glEnableVertexAttribArrayARB
#define glDisableVertexAttribArray ctx->pf_glEnableVertexAttribArrayARB
#define MAY_HAVE_PROGRAMABLE_GL
#elif defined (HAVE_COGL_GLES2)
/* NB: GLES2 had shaders in core since day one so again we don't need
* defines in this case: */
#define MAY_HAVE_PROGRAMABLE_GL
#endif
#ifndef HAVE_COGL_GL
/* GLES doesn't have glDrawRangeElements, so we simply pretend it does
* but that it makes no use of the start, end constraints: */
#define glDrawRangeElements(mode, start, end, count, type, indices) \
glDrawElements (mode, count, type, indices)
#else /* HAVE_COGL_GL */
#define glDrawRangeElements(mode, start, end, count, type, indices) \
ctx->pf_glDrawRangeElements (mode, start, end, count, type, indices)
#endif /* HAVE_COGL_GL */
static void _cogl_vertex_buffer_free (CoglVertexBuffer *buffer);
static void _cogl_vertex_buffer_indices_free (CoglVertexBufferIndices *buffer_indices);
COGL_HANDLE_DEFINE (VertexBuffer, vertex_buffer);
COGL_HANDLE_DEFINE (VertexBufferIndices, vertex_buffer_indices);
CoglHandle
cogl_vertex_buffer_new (guint n_vertices)
{
CoglVertexBuffer *buffer = g_slice_alloc (sizeof (CoglVertexBuffer));
buffer->n_vertices = n_vertices;
buffer->submitted_vbos = NULL;
buffer->new_attributes = NULL;
/* return COGL_INVALID_HANDLE; */
return _cogl_vertex_buffer_handle_new (buffer);
}
guint
cogl_vertex_buffer_get_n_vertices (CoglHandle handle)
{
CoglVertexBuffer *buffer;
if (!cogl_is_vertex_buffer (handle))
return 0;
buffer = _cogl_vertex_buffer_pointer_from_handle (handle);
return buffer->n_vertices;
}
/* There are a number of standard OpenGL attributes that we deal with
* specially. These attributes are all namespaced with a "gl_" prefix
* so we should catch any typos instead of silently adding a custom
* attribute.
*/
static CoglVertexBufferAttribFlags
validate_gl_attribute (const char *gl_attribute,
guint8 *n_components,
guint8 *texture_unit)
{
CoglVertexBufferAttribFlags type;
char *detail_seperator = NULL;
int name_len;
detail_seperator = strstr (gl_attribute, "::");
if (detail_seperator)
name_len = detail_seperator - gl_attribute;
else
name_len = strlen (gl_attribute);
if (strncmp (gl_attribute, "Vertex", name_len) == 0)
{
type = COGL_VERTEX_BUFFER_ATTRIB_FLAG_VERTEX_ARRAY;
}
else if (strncmp (gl_attribute, "Color", name_len) == 0)
{
type = COGL_VERTEX_BUFFER_ATTRIB_FLAG_COLOR_ARRAY;
}
else if (strncmp (gl_attribute,
"MultiTexCoord",
strlen ("MultiTexCoord")) == 0)
{
unsigned int unit;
if (sscanf (gl_attribute, "MultiTexCoord%u", &unit) != 1)
{
g_warning ("gl_MultiTexCoord attributes should include a\n"
"texture unit number, E.g. gl_MultiTexCoord0\n");
unit = 0;
}
/* FIXME: validate any '::' delimiter for this case */
*texture_unit = unit;
type = COGL_VERTEX_BUFFER_ATTRIB_FLAG_TEXTURE_COORD_ARRAY;
}
else if (strncmp (gl_attribute, "Normal", name_len) == 0)
{
*n_components = 1;
type = COGL_VERTEX_BUFFER_ATTRIB_FLAG_NORMAL_ARRAY;
}
else
{
g_warning ("Unknown gl_* attribute name gl_%s\n", gl_attribute);
type = COGL_VERTEX_BUFFER_ATTRIB_FLAG_INVALID;
}
return type;
}
/* This validates that a custom attribute name is a valid GLSL variable name
*
* NB: attribute names may have a detail component delimited using '::' E.g.
* custom_attrib::foo or custom_attrib::bar
*
* maybe I should hang a compiled regex somewhere to handle this
*/
static gboolean
validate_custom_attribute_name (const char *attribute_name)
{
char *detail_seperator = NULL;
int name_len;
int i;
detail_seperator = strstr (attribute_name, "::");
if (detail_seperator)
name_len = detail_seperator - attribute_name;
else
name_len = strlen (attribute_name);
if (name_len == 0
|| !g_ascii_isalpha (attribute_name[0])
|| attribute_name[0] != '_')
return FALSE;
for (i = 1; i < name_len; i++)
if (!g_ascii_isalnum (attribute_name[i]) || attribute_name[i] != '_')
return FALSE;
return TRUE;
}
/* Iterates the CoglVertexBufferVBOs of a buffer and creates a flat list
* of all the submitted attributes
*
* Note: The CoglVertexBufferAttrib structs are deep copied.
*/
static GList *
copy_submitted_attributes_list (CoglVertexBuffer *buffer)
{
GList *tmp;
GList *submitted_attributes = NULL;
for (tmp = buffer->submitted_vbos; tmp != NULL; tmp = tmp->next)
{
CoglVertexBufferVBO *cogl_vbo = tmp->data;
GList *tmp2;
for (tmp2 = cogl_vbo->attributes; tmp2 != NULL; tmp2 = tmp2->next)
{
CoglVertexBufferAttrib *attribute = tmp2->data;
CoglVertexBufferAttrib *copy =
g_slice_alloc (sizeof (CoglVertexBufferAttrib));
*copy = *attribute;
submitted_attributes = g_list_prepend (submitted_attributes, copy);
}
}
return submitted_attributes;
}
static CoglVertexBufferAttribFlags
get_attribute_gl_type_flag_from_gl_type (GLenum gl_type)
{
switch (gl_type)
{
case GL_BYTE:
return COGL_VERTEX_BUFFER_ATTRIB_FLAG_GL_TYPE_BYTE;
case GL_UNSIGNED_BYTE:
return COGL_VERTEX_BUFFER_ATTRIB_FLAG_GL_TYPE_UNSIGNED_BYTE;
case GL_SHORT:
return COGL_VERTEX_BUFFER_ATTRIB_FLAG_GL_TYPE_SHORT;
case GL_UNSIGNED_SHORT:
return COGL_VERTEX_BUFFER_ATTRIB_FLAG_GL_TYPE_UNSIGNED_SHORT;
case GL_FLOAT:
return COGL_VERTEX_BUFFER_ATTRIB_FLAG_GL_TYPE_FLOAT;
#if HAVE_COGL_GL
case GL_INT:
return COGL_VERTEX_BUFFER_ATTRIB_FLAG_GL_TYPE_INT;
case GL_UNSIGNED_INT:
return COGL_VERTEX_BUFFER_ATTRIB_FLAG_GL_TYPE_UNSIGNED_INT;
case GL_DOUBLE:
return COGL_VERTEX_BUFFER_ATTRIB_FLAG_GL_TYPE_DOUBLE;
#endif
default:
g_warning ("Attribute Buffers API: "
"Unrecognised OpenGL type enum 0x%08x\n", gl_type);
return 0;
}
}
static gsize
get_gl_type_size (CoglVertexBufferAttribFlags flags)
{
CoglVertexBufferAttribFlags gl_type =
flags & COGL_VERTEX_BUFFER_ATTRIB_FLAG_GL_TYPE_MASK;
switch (gl_type)
{
case COGL_VERTEX_BUFFER_ATTRIB_FLAG_GL_TYPE_BYTE:
return sizeof (GLbyte);
case COGL_VERTEX_BUFFER_ATTRIB_FLAG_GL_TYPE_UNSIGNED_BYTE:
return sizeof (GLubyte);
case COGL_VERTEX_BUFFER_ATTRIB_FLAG_GL_TYPE_SHORT:
return sizeof (GLshort);
case COGL_VERTEX_BUFFER_ATTRIB_FLAG_GL_TYPE_UNSIGNED_SHORT:
return sizeof (GLushort);
case COGL_VERTEX_BUFFER_ATTRIB_FLAG_GL_TYPE_FLOAT:
return sizeof (GLfloat);
#if HAVE_COGL_GL
case COGL_VERTEX_BUFFER_ATTRIB_FLAG_GL_TYPE_INT:
return sizeof (GLint);
case COGL_VERTEX_BUFFER_ATTRIB_FLAG_GL_TYPE_UNSIGNED_INT:
return sizeof (GLuint);
case COGL_VERTEX_BUFFER_ATTRIB_FLAG_GL_TYPE_DOUBLE:
return sizeof (GLdouble);
#endif
default:
g_warning ("Vertex Buffer API: Unrecognised OpenGL type enum 0x%08x\n", gl_type);
return 0;
}
}
void
cogl_vertex_buffer_add (CoglHandle handle,
const char *attribute_name,
guint8 n_components,
CoglAttributeType type,
gboolean normalized,
guint16 stride,
const void *pointer)
{
CoglVertexBuffer *buffer;
GQuark name_quark = g_quark_from_string (attribute_name);
gboolean modifying_an_attrib = FALSE;
CoglVertexBufferAttrib *attribute;
CoglVertexBufferAttribFlags flags = 0;
guint8 texture_unit = 0;
GList *tmp;
if (!cogl_is_vertex_buffer (handle))
return;
buffer = _cogl_vertex_buffer_pointer_from_handle (handle);
/* The submit function works by diffing between submitted_attributes
* and new_attributes to minimize the upload bandwidth + cost of
* allocating new VBOs, so if there isn't already a list of new_attributes
* we create one: */
if (!buffer->new_attributes)
buffer->new_attributes = copy_submitted_attributes_list (buffer);
/* Note: we first look for an existing attribute that we are modifying
* so we may skip needing to validate the name */
for (tmp = buffer->new_attributes; tmp != NULL; tmp = tmp->next)
{
CoglVertexBufferAttrib *submitted_attribute = tmp->data;
if (submitted_attribute->name == name_quark)
{
modifying_an_attrib = TRUE;
attribute = submitted_attribute;
/* since we will skip validate_gl_attribute in this case, we need
* to pluck out the attribute type before overwriting the flags: */
flags |=
attribute->flags & COGL_VERTEX_BUFFER_ATTRIB_FLAG_TYPE_MASK;
break;
}
}
if (!modifying_an_attrib)
{
/* Validate the attribute name, is suitable as a variable name */
if (strncmp (attribute_name, "gl_", 3) == 0)
{
flags |= validate_gl_attribute (attribute_name + 3,
&n_components,
&texture_unit);
if (flags & COGL_VERTEX_BUFFER_ATTRIB_FLAG_INVALID)
return;
}
else
{
flags |= COGL_VERTEX_BUFFER_ATTRIB_FLAG_CUSTOM_ARRAY;
if (validate_custom_attribute_name (attribute_name))
return;
}
attribute = g_slice_alloc (sizeof (CoglVertexBufferAttrib));
}
attribute->name = g_quark_from_string (attribute_name);
attribute->n_components = n_components;
attribute->stride = buffer->n_vertices > 1 ? stride : 0;
attribute->u.pointer = pointer;
attribute->texture_unit = texture_unit;
flags |= get_attribute_gl_type_flag_from_gl_type (type);
flags |= COGL_VERTEX_BUFFER_ATTRIB_FLAG_ENABLED;
/* Note: We currently just assume, if an attribute is *ever* updated
* then it should be taged as frequently changing. */
if (modifying_an_attrib)
flags |= COGL_VERTEX_BUFFER_ATTRIB_FLAG_FREQUENT_RESUBMIT;
else
flags |= COGL_VERTEX_BUFFER_ATTRIB_FLAG_INFREQUENT_RESUBMIT;
if (normalized)
flags |= COGL_VERTEX_BUFFER_ATTRIB_FLAG_NORMALIZED;
attribute->flags = flags;
/* NB: get_gl_type_size must be called after setting the type
* flags, above. */
if (attribute->stride)
attribute->span_bytes = buffer->n_vertices * attribute->stride;
else
attribute->span_bytes = buffer->n_vertices
* attribute->n_components
* get_gl_type_size (attribute->flags);
if (!modifying_an_attrib)
buffer->new_attributes =
g_list_prepend (buffer->new_attributes, attribute);
}
void
cogl_vertex_buffer_delete (CoglHandle handle,
const char *attribute_name)
{
CoglVertexBuffer *buffer;
GQuark name = g_quark_from_string (attribute_name);
GList *tmp;
if (!cogl_is_vertex_buffer (handle))
return;
buffer = _cogl_vertex_buffer_pointer_from_handle (handle);
/* The submit function works by diffing between submitted_attributes
* and new_attributes to minimize the upload bandwidth + cost of
* allocating new VBOs, so if there isn't already a list of new_attributes
* we create one: */
if (!buffer->new_attributes)
buffer->new_attributes = copy_submitted_attributes_list (buffer);
for (tmp = buffer->new_attributes; tmp != NULL; tmp = tmp->next)
{
CoglVertexBufferAttrib *submitted_attribute = tmp->data;
if (submitted_attribute->name == name)
{
buffer->new_attributes =
g_list_delete_link (buffer->new_attributes, tmp);
g_slice_free (CoglVertexBufferAttrib, submitted_attribute);
return;
}
}
g_warning ("Failed to find an attribute named %s to delete\n",
attribute_name);
}
static void
set_attribute_enable (CoglHandle handle,
const char *attribute_name,
gboolean state)
{
CoglVertexBuffer *buffer;
GQuark name_quark = g_quark_from_string (attribute_name);
GList *tmp;
if (!cogl_is_vertex_buffer (handle))
return;
buffer = _cogl_vertex_buffer_pointer_from_handle (handle);
/* NB: If a buffer is currently being edited, then there can be two seperate
* lists of attributes; those that are currently submitted and a new list yet
* to be submitted, we need to modify both. */
for (tmp = buffer->new_attributes; tmp != NULL; tmp = tmp->next)
{
CoglVertexBufferAttrib *attribute = tmp->data;
if (attribute->name == name_quark)
{
if (state)
attribute->flags |= COGL_VERTEX_BUFFER_ATTRIB_FLAG_ENABLED;
else
attribute->flags &= ~COGL_VERTEX_BUFFER_ATTRIB_FLAG_ENABLED;
break;
}
}
for (tmp = buffer->submitted_vbos; tmp != NULL; tmp = tmp->next)
{
CoglVertexBufferVBO *cogl_vbo = tmp->data;
GList *tmp2;
for (tmp2 = cogl_vbo->attributes; tmp2 != NULL; tmp2 = tmp2->next)
{
CoglVertexBufferAttrib *attribute = tmp2->data;
if (attribute->name == name_quark)
{
if (state)
attribute->flags |= COGL_VERTEX_BUFFER_ATTRIB_FLAG_ENABLED;
else
attribute->flags &= ~COGL_VERTEX_BUFFER_ATTRIB_FLAG_ENABLED;
return;
}
}
}
g_warning ("Failed to find an attribute named %s to %s\n",
attribute_name,
state == TRUE ? "enable" : "disable");
}
void
cogl_vertex_buffer_enable (CoglHandle handle,
const char *attribute_name)
{
set_attribute_enable (handle, attribute_name, TRUE);
}
void
cogl_vertex_buffer_disable (CoglHandle handle,
const char *attribute_name)
{
set_attribute_enable (handle, attribute_name, FALSE);
}
static void
cogl_vertex_buffer_attribute_free (CoglVertexBufferAttrib *attribute)
{
g_slice_free (CoglVertexBufferAttrib, attribute);
}
/* Given an attribute that we know has already been submitted before, this
* function looks for the existing VBO that contains it.
*
* Note: It will free redundant attribute struct once the corresponding
* VBO has been found.
*/
static void
filter_already_submitted_attribute (CoglVertexBufferAttrib *attribute,
GList **reuse_vbos,
GList **submitted_vbos)
{
GList *tmp;
/* First check the cogl_vbos we already know are being reused since we
* are more likley to get a match here */
for (tmp = *reuse_vbos; tmp != NULL; tmp = tmp->next)
{
CoglVertexBufferVBO *cogl_vbo = tmp->data;
GList *tmp2;
for (tmp2 = cogl_vbo->attributes; tmp2 != NULL; tmp2 = tmp2->next)
{
CoglVertexBufferAttrib *vbo_attribute = tmp2->data;
if (vbo_attribute->name == attribute->name)
{
vbo_attribute->flags &=
~COGL_VERTEX_BUFFER_ATTRIB_FLAG_UNUSED;
/* Note: we don't free the redundant attribute here, since it
* will be freed after all filtering in
* cogl_vertex_buffer_submit */
return;
}
}
}
for (tmp = *submitted_vbos; tmp != NULL; tmp = tmp->next)
{
CoglVertexBufferVBO *cogl_vbo = tmp->data;
CoglVertexBufferAttrib *reuse_attribute = NULL;
GList *tmp2;
for (tmp2 = cogl_vbo->attributes; tmp2 != NULL; tmp2 = tmp2->next)
{
CoglVertexBufferAttrib *vbo_attribute = tmp2->data;
if (vbo_attribute->name == attribute->name)
{
reuse_attribute = vbo_attribute;
/* Note: we don't free the redundant attribute here, since it
* will be freed after all filtering in
* cogl_vertex_buffer_submit */
*submitted_vbos = g_list_remove_link (*submitted_vbos, tmp);
tmp->next = *reuse_vbos;
*reuse_vbos = tmp;
break;
}
}
if (!reuse_attribute)
continue;
/* Mark all but the matched attribute as UNUSED, so that when we
* finish filtering all our attributes any attrributes still
* marked as UNUSED can be removed from the their cogl_vbo */
for (tmp2 = cogl_vbo->attributes; tmp2 != NULL; tmp2 = tmp2->next)
{
CoglVertexBufferAttrib *vbo_attribute = tmp2->data;
if (vbo_attribute != reuse_attribute)
vbo_attribute->flags |= COGL_VERTEX_BUFFER_ATTRIB_FLAG_UNUSED;
}
return;
}
g_critical ("Failed to find the cogl vbo that corresponds to an\n"
"attribute that had apparently already been submitted!");
}
/* When we first mark a CoglVertexBufferVBO to be reused, we mark the
* attributes as unsed, so that when filtering of attributes into VBOs is done
* we can then prune the now unsed attributes. */
static void
remove_unused_attributes (CoglVertexBufferVBO *cogl_vbo)
{
GList *tmp;
GList *next;
for (tmp = cogl_vbo->attributes; tmp != NULL; tmp = next)
{
CoglVertexBufferAttrib *attribute = tmp->data;
next = tmp->next;
if (attribute->flags & COGL_VERTEX_BUFFER_ATTRIB_FLAG_UNUSED)
{
cogl_vbo->attributes =
g_list_delete_link (cogl_vbo->attributes, tmp);
g_slice_free (CoglVertexBufferAttrib, attribute);
}
}
}
/* Give a newly added, strided, attribute, this function looks for a
* CoglVertexBufferVBO that the attribute is interleved with. If it can't
* find one then a new CoglVertexBufferVBO is allocated and added to the
* list of new_strided_vbos.
*/
static void
filter_strided_attribute (CoglVertexBufferAttrib *attribute,
GList **new_vbos)
{
GList *tmp;
CoglVertexBufferVBO *new_cogl_vbo;
for (tmp = *new_vbos; tmp != NULL; tmp = tmp->next)
{
CoglVertexBufferVBO *cogl_vbo = tmp->data;
GList *tmp2;
2009-06-05 15:18:43 +01:00
if (!(cogl_vbo->flags & COGL_VERTEX_BUFFER_VBO_FLAG_STRIDED))
continue;
for (tmp2 = cogl_vbo->attributes; tmp2 != NULL; tmp2 = tmp2->next)
{
CoglVertexBufferAttrib *vbo_attribute = tmp2->data;
const char *attribute_start = attribute->u.pointer;
const char *vbo_attribute_start = vbo_attribute->u.pointer;
/* NB: All attributes have buffer->n_vertices values which
* simplifies determining which attributes are interleved
* since we assume they will start no farther than +- a
* stride away from each other:
*/
if (attribute_start <= (vbo_attribute_start - vbo_attribute->stride)
|| attribute_start
>= (vbo_attribute_start + vbo_attribute->stride))
continue; /* Not interleved */
cogl_vbo->attributes =
g_list_prepend (cogl_vbo->attributes, attribute);
if (attribute->flags &
COGL_VERTEX_BUFFER_ATTRIB_FLAG_FREQUENT_RESUBMIT)
{
cogl_vbo->flags &=
~COGL_VERTEX_BUFFER_VBO_FLAG_INFREQUENT_RESUBMIT;
cogl_vbo->flags |=
COGL_VERTEX_BUFFER_VBO_FLAG_FREQUENT_RESUBMIT;
}
return;
}
}
new_cogl_vbo = g_slice_alloc (sizeof (CoglVertexBufferVBO));
new_cogl_vbo->vbo_name = 0;
new_cogl_vbo->attributes = NULL;
new_cogl_vbo->attributes =
g_list_prepend (new_cogl_vbo->attributes, attribute);
/* Any one of the interleved attributes will have the same span_bytes */
new_cogl_vbo->vbo_bytes = attribute->span_bytes;
new_cogl_vbo->flags = COGL_VERTEX_BUFFER_VBO_FLAG_STRIDED;
if (attribute->flags & COGL_VERTEX_BUFFER_ATTRIB_FLAG_INFREQUENT_RESUBMIT)
new_cogl_vbo->flags |= COGL_VERTEX_BUFFER_VBO_FLAG_INFREQUENT_RESUBMIT;
else
new_cogl_vbo->flags |= COGL_VERTEX_BUFFER_VBO_FLAG_FREQUENT_RESUBMIT;
*new_vbos = g_list_prepend (*new_vbos, new_cogl_vbo);
return;
}
/* This iterates through the list of submitted VBOs looking for one that
* contains attribute. If found the list *link* is removed and returned */
static GList *
unlink_submitted_vbo_containing_attribute (GList **submitted_vbos,
CoglVertexBufferAttrib *attribute)
{
GList *tmp;
GList *next = NULL;
for (tmp = *submitted_vbos; tmp != NULL; tmp = next)
{
CoglVertexBufferVBO *submitted_vbo = tmp->data;
GList *tmp2;
next = tmp->next;
for (tmp2 = submitted_vbo->attributes; tmp2 != NULL; tmp2 = tmp2->next)
{
CoglVertexBufferAttrib *submitted_attribute = tmp2->data;
if (submitted_attribute->name == attribute->name)
{
*submitted_vbos = g_list_remove_link (*submitted_vbos, tmp);
return tmp;
}
}
}
return NULL;
}
/* Unlinks all the submitted VBOs that conflict with the new cogl_vbo and
* returns them as a list. */
static GList *
get_submitted_vbo_conflicts (GList **submitted_vbos,
CoglVertexBufferVBO *cogl_vbo)
{
GList *tmp;
GList *conflicts = NULL;
for (tmp = cogl_vbo->attributes; tmp != NULL; tmp = tmp->next)
{
GList *link =
unlink_submitted_vbo_containing_attribute (submitted_vbos,
tmp->data);
if (link)
{
/* prepend the link to the list of conflicts: */
link->next = conflicts;
conflicts = link;
}
}
return conflicts;
}
/* Any attributes in cogl_vbo gets removed from conflict_vbo */
static void
disassociate_conflicting_attributes (CoglVertexBufferVBO *conflict_vbo,
CoglVertexBufferVBO *cogl_vbo)
{
GList *tmp;
/* NB: The attributes list in conflict_vbo will be shrinking so
* we iterate those in the inner loop. */
for (tmp = cogl_vbo->attributes; tmp != NULL; tmp = tmp->next)
{
CoglVertexBufferAttrib *attribute = tmp->data;
GList *tmp2;
for (tmp2 = conflict_vbo->attributes; tmp2 != NULL; tmp2 = tmp2->next)
{
CoglVertexBufferAttrib *conflict_attribute = tmp2->data;
if (conflict_attribute->name == attribute->name)
{
cogl_vertex_buffer_attribute_free (conflict_attribute);
conflict_vbo->attributes =
g_list_delete_link (conflict_vbo->attributes, tmp2);
break;
}
}
}
}
static void
cogl_vertex_buffer_vbo_free (CoglVertexBufferVBO *cogl_vbo,
gboolean delete_gl_vbo)
{
GList *tmp;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
for (tmp = cogl_vbo->attributes; tmp != NULL; tmp = tmp->next)
{
cogl_vertex_buffer_attribute_free (tmp->data);
}
g_list_free (cogl_vbo->attributes);
if (delete_gl_vbo && cogl_vbo->flags &
COGL_VERTEX_BUFFER_VBO_FLAG_SUBMITTED)
{
if (cogl_get_features () & COGL_FEATURE_VBOS)
GE (glDeleteBuffers (1, (GLuint *)&cogl_vbo->vbo_name));
else
g_free (cogl_vbo->vbo_name);
}
g_slice_free (CoglVertexBufferVBO, cogl_vbo);
}
/* This figures out the lowest attribute client pointer. (This pointer is used
* to upload all the interleved attributes).
*
* In the process it also replaces the client pointer with the attributes
* offset, and marks the attribute as submitted.
*/
static const void *
prep_strided_vbo_for_upload (CoglVertexBufferVBO *cogl_vbo)
{
GList *tmp;
const char *lowest_pointer = NULL;
for (tmp = cogl_vbo->attributes; tmp != NULL; tmp = tmp->next)
{
CoglVertexBufferAttrib *attribute = tmp->data;
const char *client_pointer = attribute->u.pointer;
if (!lowest_pointer || client_pointer < lowest_pointer)
lowest_pointer = client_pointer;
}
for (tmp = cogl_vbo->attributes; tmp != NULL; tmp = tmp->next)
{
CoglVertexBufferAttrib *attribute = tmp->data;
const char *client_pointer = attribute->u.pointer;
attribute->u.vbo_offset = client_pointer - lowest_pointer;
attribute->flags |= COGL_VERTEX_BUFFER_ATTRIB_FLAG_SUBMITTED;
}
return lowest_pointer;
}
static gboolean
upload_multipack_vbo_via_map_buffer (CoglVertexBufferVBO *cogl_vbo)
{
#if HAVE_COGL_GL
GList *tmp;
guint offset = 0;
char *buf;
gboolean fallback =
(cogl_get_features () & COGL_FEATURE_VBOS) ? FALSE : TRUE;
_COGL_GET_CONTEXT (ctx, FALSE);
if (!fallback)
{
buf = glMapBuffer (GL_ARRAY_BUFFER, GL_WRITE_ONLY);
glGetError();
}
else
buf = cogl_vbo->vbo_name;
if (!buf)
return FALSE;
for (tmp = cogl_vbo->attributes; tmp != NULL; tmp = tmp->next)
{
CoglVertexBufferAttrib *attribute = tmp->data;
gsize attribute_size = attribute->span_bytes;
gsize gl_type_size = get_gl_type_size (attribute->flags);
PAD_FOR_ALIGNMENT (offset, gl_type_size);
memcpy (buf + offset, attribute->u.pointer, attribute_size);
attribute->u.vbo_offset = offset;
attribute->flags |= COGL_VERTEX_BUFFER_ATTRIB_FLAG_SUBMITTED;
offset += attribute_size;
}
if (!fallback)
glUnmapBuffer (GL_ARRAY_BUFFER);
return TRUE;
#else
return FALSE;
#endif
}
static void
upload_multipack_vbo_via_buffer_sub_data (CoglVertexBufferVBO *cogl_vbo)
{
GList *tmp;
guint offset = 0;
gboolean fallback =
(cogl_get_features () & COGL_FEATURE_VBOS) ? FALSE : TRUE;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
for (tmp = cogl_vbo->attributes; tmp != NULL; tmp = tmp->next)
{
CoglVertexBufferAttrib *attribute = tmp->data;
gsize attribute_size = attribute->span_bytes;
gsize gl_type_size = get_gl_type_size (attribute->flags);
PAD_FOR_ALIGNMENT (offset, gl_type_size);
if (!fallback)
{
GE (glBufferSubData (GL_ARRAY_BUFFER,
offset,
attribute_size,
attribute->u.pointer));
}
else
{
char *dest = (char *)cogl_vbo->vbo_name + offset;
memcpy (dest, attribute->u.pointer, attribute_size);
}
attribute->u.vbo_offset = offset;
attribute->flags |= COGL_VERTEX_BUFFER_ATTRIB_FLAG_SUBMITTED;
offset += attribute_size;
}
}
static void
upload_gl_vbo (CoglVertexBufferVBO *cogl_vbo)
{
GLenum usage;
gboolean fallback =
(cogl_get_features () & COGL_FEATURE_VBOS) ? FALSE : TRUE;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
if (cogl_vbo->flags & COGL_VERTEX_BUFFER_VBO_FLAG_FREQUENT_RESUBMIT)
usage = GL_DYNAMIC_DRAW;
else
usage = GL_STATIC_DRAW;
if (!fallback)
{
g_return_if_fail (cogl_vbo->vbo_name != 0);
GE (glBindBuffer (GL_ARRAY_BUFFER,
GPOINTER_TO_UINT (cogl_vbo->vbo_name)));
}
else if (cogl_vbo->vbo_name == NULL)
{
/* If the driver doesn't support VBOs then we simply allocate
* a client side fake vbo buffer. Unlike VBOs we can't allocate
* without specifying a size which is why we defer allocation
* until here. */
cogl_vbo->vbo_name = g_malloc (cogl_vbo->vbo_bytes);
}
if (cogl_vbo->flags & COGL_VERTEX_BUFFER_VBO_FLAG_STRIDED)
{
const void *pointer =
prep_strided_vbo_for_upload (cogl_vbo);
if (!fallback)
{
GE (glBufferData (GL_ARRAY_BUFFER,
cogl_vbo->vbo_bytes,
pointer,
usage));
}
else
memcpy (cogl_vbo->vbo_name, pointer, cogl_vbo->vbo_bytes);
}
else if (cogl_vbo->flags & COGL_VERTEX_BUFFER_VBO_FLAG_MULTIPACK)
{
/* First we make it obvious to the driver that we want to update the
* whole buffer (without this, the driver is more likley to block
* if the GPU is busy using the buffer) */
if (!fallback)
{
GE (glBufferData (GL_ARRAY_BUFFER,
cogl_vbo->vbo_bytes,
NULL,
usage));
}
/* I think it might depend on the specific driver/HW whether its better
* to use glMapBuffer here or glBufferSubData here. There is even a good
* thread about this topic here:
* http://www.mail-archive.com/dri-devel@lists.sourceforge.net/msg35004.html
* For now I have gone with glMapBuffer, but the jury is still out.
*/
if (!upload_multipack_vbo_via_map_buffer (cogl_vbo))
upload_multipack_vbo_via_buffer_sub_data (cogl_vbo);
}
else
{
CoglVertexBufferAttrib *attribute = cogl_vbo->attributes->data;
if (!fallback)
{
GE (glBufferData (GL_ARRAY_BUFFER,
cogl_vbo->vbo_bytes,
attribute->u.pointer,
usage));
}
else
memcpy (cogl_vbo->vbo_name, attribute->u.pointer, cogl_vbo->vbo_bytes);
/* We forget this pointer now since the client will be free
* to re-use this memory */
attribute->u.pointer = NULL;
attribute->flags |= COGL_VERTEX_BUFFER_ATTRIB_FLAG_SUBMITTED;
}
cogl_vbo->flags |= COGL_VERTEX_BUFFER_VBO_FLAG_SUBMITTED;
if (!fallback)
GE (glBindBuffer (GL_ARRAY_BUFFER, 0));
}
/* Note: although there ends up being quite a few inner loops involved with
* resolving buffers, the number of attributes will be low so I don't expect
* them to cause a problem. */
static void
cogl_vertex_buffer_vbo_resolve (CoglVertexBuffer *buffer,
CoglVertexBufferVBO *new_cogl_vbo,
GList **final_vbos)
{
GList *conflicts;
GList *tmp;
GList *next;
gboolean found_target_vbo = FALSE;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
conflicts =
get_submitted_vbo_conflicts (&buffer->submitted_vbos, new_cogl_vbo);
for (tmp = conflicts; tmp != NULL; tmp = next)
{
CoglVertexBufferVBO *conflict_vbo = tmp->data;
next = tmp->next;
disassociate_conflicting_attributes (conflict_vbo, new_cogl_vbo);
if (!conflict_vbo->attributes)
{
/* See if we can re-use this now empty VBO: */
if (!found_target_vbo
&& conflict_vbo->vbo_bytes == new_cogl_vbo->vbo_bytes)
{
found_target_vbo = TRUE;
new_cogl_vbo->vbo_name = conflict_vbo->vbo_name;
cogl_vertex_buffer_vbo_free (conflict_vbo, FALSE);
upload_gl_vbo (new_cogl_vbo);
*final_vbos = g_list_prepend (*final_vbos, new_cogl_vbo);
}
else
cogl_vertex_buffer_vbo_free (conflict_vbo, TRUE);
}
else
{
/* Relink the VBO back into buffer->submitted_vbos since it may
* be involved in other conflicts later */
tmp->next = buffer->submitted_vbos;
tmp->prev = NULL;
buffer->submitted_vbos = tmp;
}
}
if (!found_target_vbo)
{
if (cogl_get_features () & COGL_FEATURE_VBOS)
GE (glGenBuffers (1, (GLuint *)&new_cogl_vbo->vbo_name));
else
new_cogl_vbo->vbo_name = NULL;
/* this will be allocated at upload time */
upload_gl_vbo (new_cogl_vbo);
*final_vbos = g_list_prepend (*final_vbos, new_cogl_vbo);
}
}
static void
cogl_vertex_buffer_submit_real (CoglVertexBuffer *buffer)
{
GList *tmp;
CoglVertexBufferVBO *new_multipack_vbo;
GList *new_multipack_vbo_link;
GList *new_vbos = NULL;
GList *reuse_vbos = NULL;
GList *final_vbos = NULL;
if (!buffer->new_attributes)
return;
/* The objective now is to copy the attribute data supplied by the client
* into buffer objects, but it's important to minimize the number of
* redundant data uploads.
*
* We obviously aim to group together the attributes that are interleved so
* that they can be delivered in one go to the driver.
* All BOs for interleved data are created as STATIC_DRAW_ARB.
*
* Non interleved attributes tagged as INFREQUENT_RESUBMIT will be grouped
* together back to back in a single BO created as STATIC_DRAW_ARB
*
* Non interleved attributes tagged as FREQUENT_RESUBMIT will be copied into
* individual buffer objects, and the BO itself created DYNAMIC_DRAW_ARB
*
* If we are modifying a previously submitted CoglVertexBuffer then we are
* carefull not to needlesly delete OpenGL buffer objects and replace with
* new ones, instead we upload new data to the existing buffers.
*/
/* NB: We must forget attribute->pointer after submitting since the user
* is free to re-use that memory for other purposes now. */
/* Pseudo code:
*
* Broadly speaking we start with a list of unsorted attributes, and filter
* those into 'new' and 're-use' CoglVertexBufferVBO (CBO) lists. We then
* take the list of new CBO structs and compare with the CBOs that have
* already been submitted to the GPU (but ignoring those we already know will
* be re-used) to determine what other CBOs can be re-used, due to being
* superseded, and what new GL VBOs need to be created.
*
* We have three kinds of CBOs:
* - Unstrided CBOs
* These contain a single tightly packed attribute
* These are currently the only ones ever marked as FREQUENT_SUBMIT
* - Strided CBOs
* These typically contain multiple interleved sets of attributes,
* though they can contain just one attribute with a stride
* - Multi Pack CBOs
* These contain multiple attributes tightly packed back to back)
*
* First create a new-CBOs entry "new-multipack-CBO"
* Tag "new-multipack-CBO" as MULTIPACK + INFREQUENT_RESUBMIT
* For each unsorted attrib:
* if already marked as submitted:
* iterate reuse-CBOs:
* if we find one that contains this attribute:
* free redundant unsorted attrib struct
* remove the UNUSED flag from the attrib found in the reuse-CBO
* continue to next unsorted attrib
* iterate submitted VBOs:
* if we find one that contains this attribute:
* free redundant unsorted attrib struct
* unlink the vbo and move it to the list of reuse-CBOs
* mark all attributes except the one just matched as UNUSED
* assert (found)
* continue to next unsorted attrib
* if strided:
* iterate the new, strided, CBOs, to see if the attribute is
* interleved with one of them, if found:
* add to the matched CBO
* else if not found:
* create a new-CBOs entry tagged STRIDED + INFREQUENT_RESUBMIT
* else if unstrided && tagged with FREQUENT_RESUBMIT:
* create a new-CBOs entry tagged UNSTRIDED + FREQUENT_RESUBMIT
* else
* add to the new-multipack-CBO
* free list of unsorted-attribs
*
* Next compare the new list of CBOs with the submitted set and try to
* minimize the memory bandwidth required to upload the attributes and the
* overhead of creating new GL-BOs.
*
* We deal with four sets of CBOs:
* - The "new" CBOs
* (as determined above during filtering)
* - The "re-use" CBOs
* (as determined above during filtering)
* - The "submitted" CBOs
* (I.e. ones currently submitted to the GPU)
* - The "final" CBOs
* (The result of resolving the differences between the above sets)
*
* The re-use CBOs are dealt with first, and we simply delete any remaining
* attributes in these that are still marked as UNUSED, and move them
* to the list of final CBOs.
*
* Next we iterate through the "new" CBOs, searching for conflicts
* with the "submitted" CBOs and commit our decision to the "final" CBOs
*
* When searching for submitted entries we always unlink items from the
* submitted list once we make matches (before we make descisions
* based on the matches). If the CBO node is superseded it is freed,
* if it is modified but may be needed for more descisions later it is
* relinked back into the submitted list and if it's identical to a new
* CBO it will be linked into the final list.
*
* At the end the list of submitted CBOs represents the attributes that were
* deleted from the buffer.
*
* Iterate re-use-CBOs:
* Iterate attribs for each:
* if attrib UNUSED:
* remove the attrib from the CBO + free
* |Note: we could potentially mark this as a re-useable gap
* |if needs be later.
* add re-use CBO to the final-CBOs
* Iterate new-CBOs:
* List submitted CBOs conflicting with the this CBO (Unlinked items)
* found-target-BO=FALSE
* Iterate conflicting CBOs:
* Disassociate conflicting attribs from conflicting CBO struct
* If no attribs remain:
* If found-target-BO!=TRUE
* _AND_ If the total size of the conflicting CBO is compatible:
* |Note: We don't currently consider re-using oversized buffers
* found-target-BO=TRUE
* upload replacement data
* free submitted CBO struct
* add new CBO struct to final-CBOs
* else:
* delete conflict GL-BO
* delete conflict CBO struct
* else:
* relink CBO back into submitted-CBOs
*
* if found-target-BO == FALSE:
* create a new GL-BO
* upload data
* add new CBO struct to final-BOs
*
* Iterate through the remaining "submitted" CBOs:
* delete the submitted GL-BO
* free the submitted CBO struct
*/
new_multipack_vbo = g_slice_alloc (sizeof (CoglVertexBufferVBO));
new_multipack_vbo->vbo_name = 0;
new_multipack_vbo->flags =
COGL_VERTEX_BUFFER_VBO_FLAG_MULTIPACK
| COGL_VERTEX_BUFFER_VBO_FLAG_INFREQUENT_RESUBMIT;
new_multipack_vbo->vbo_bytes = 0;
new_multipack_vbo->attributes = NULL;
new_vbos = g_list_prepend (new_vbos, new_multipack_vbo);
/* We save the link pointer here, just so we can do a fast removal later if
* no attributes get added to this vbo. */
new_multipack_vbo_link = new_vbos;
/* Start with a list of unsorted attributes, and filter those into
* potential new Cogl BO structs
*/
for (tmp = buffer->new_attributes; tmp != NULL; tmp = tmp->next)
{
CoglVertexBufferAttrib *attribute = tmp->data;
if (attribute->flags & COGL_VERTEX_BUFFER_ATTRIB_FLAG_SUBMITTED)
{
/* If the attribute is already marked as submitted, then we need
* to find the existing VBO that contains it so we dont delete it.
*
* NB: this also frees the attribute struct since it's implicitly
* redundant in this case.
*/
filter_already_submitted_attribute (attribute,
&reuse_vbos,
&buffer->submitted_vbos);
}
else if (attribute->stride)
{
/* look for a CoglVertexBufferVBO that the attribute is
* interleved with. If one can't be found then a new
* CoglVertexBufferVBO is allocated and added to the list of
* new_vbos: */
filter_strided_attribute (attribute, &new_vbos);
}
else if (attribute->flags &
COGL_VERTEX_BUFFER_ATTRIB_FLAG_FREQUENT_RESUBMIT)
{
CoglVertexBufferVBO *cogl_vbo =
g_slice_alloc (sizeof (CoglVertexBufferVBO));
/* attributes we expect will be frequently resubmitted are placed
* in their own VBO so that updates don't impact other attributes
*/
cogl_vbo->vbo_name = 0;
cogl_vbo->flags =
COGL_VERTEX_BUFFER_VBO_FLAG_UNSTRIDED
| COGL_VERTEX_BUFFER_VBO_FLAG_FREQUENT_RESUBMIT;
cogl_vbo->attributes = NULL;
cogl_vbo->attributes = g_list_prepend (cogl_vbo->attributes,
attribute);
cogl_vbo->vbo_bytes = attribute->span_bytes;
new_vbos = g_list_prepend (new_vbos, cogl_vbo);
}
else
{
gsize gl_type_size = get_gl_type_size (attribute->flags);
/* Infrequently updated attributes just get packed back to back
* in a single VBO: */
new_multipack_vbo->attributes =
g_list_prepend (new_multipack_vbo->attributes,
attribute);
/* Note: we have to ensure that each run of attributes is
* naturally aligned according to its data type, which may
* require some padding bytes: */
/* XXX: We also have to be sure that the attributes aren't
* reorderd before being uploaded because the alignment padding
* is based on the adjacent attribute.
*/
PAD_FOR_ALIGNMENT (new_multipack_vbo->vbo_bytes, gl_type_size);
new_multipack_vbo->vbo_bytes += attribute->span_bytes;
}
}
/* At this point all buffer->new_attributes have been filtered into
* CoglVertexBufferVBOs... */
g_list_free (buffer->new_attributes);
buffer->new_attributes = NULL;
/* If the multipack vbo wasn't needed: */
if (new_multipack_vbo->attributes == NULL)
{
new_vbos = g_list_delete_link (new_vbos, new_multipack_vbo_link);
g_slice_free (CoglVertexBufferVBO, new_multipack_vbo);
}
for (tmp = reuse_vbos; tmp != NULL; tmp = tmp->next)
remove_unused_attributes (tmp->data);
final_vbos = g_list_concat (final_vbos, reuse_vbos);
for (tmp = new_vbos; tmp != NULL; tmp = tmp->next)
cogl_vertex_buffer_vbo_resolve (buffer, tmp->data, &final_vbos);
/* Anything left corresponds to deleted attributes: */
for (tmp = buffer->submitted_vbos; tmp != NULL; tmp = tmp->next)
cogl_vertex_buffer_vbo_free (tmp->data, TRUE);
g_list_free (buffer->submitted_vbos);
buffer->submitted_vbos = final_vbos;
}
void
cogl_vertex_buffer_submit (CoglHandle handle)
{
CoglVertexBuffer *buffer;
if (!cogl_is_vertex_buffer (handle))
return;
buffer = _cogl_vertex_buffer_pointer_from_handle (handle);
cogl_vertex_buffer_submit_real (buffer);
}
static GLenum
get_gl_type_from_attribute_flags (CoglVertexBufferAttribFlags flags)
{
CoglVertexBufferAttribFlags gl_type =
flags & COGL_VERTEX_BUFFER_ATTRIB_FLAG_GL_TYPE_MASK;
switch (gl_type)
{
case COGL_VERTEX_BUFFER_ATTRIB_FLAG_GL_TYPE_BYTE:
return GL_BYTE;
case COGL_VERTEX_BUFFER_ATTRIB_FLAG_GL_TYPE_UNSIGNED_BYTE:
return GL_UNSIGNED_BYTE;
case COGL_VERTEX_BUFFER_ATTRIB_FLAG_GL_TYPE_SHORT:
return GL_SHORT;
case COGL_VERTEX_BUFFER_ATTRIB_FLAG_GL_TYPE_UNSIGNED_SHORT:
return GL_UNSIGNED_SHORT;
case COGL_VERTEX_BUFFER_ATTRIB_FLAG_GL_TYPE_FLOAT:
return GL_FLOAT;
#if HAVE_COGL_GL
case COGL_VERTEX_BUFFER_ATTRIB_FLAG_GL_TYPE_INT:
return GL_INT;
case COGL_VERTEX_BUFFER_ATTRIB_FLAG_GL_TYPE_UNSIGNED_INT:
return GL_UNSIGNED_INT;
case COGL_VERTEX_BUFFER_ATTRIB_FLAG_GL_TYPE_DOUBLE:
return GL_DOUBLE;
#endif
default:
g_warning ("Couldn't convert from attribute flags (0x%08x) "
"to gl type enum\n", flags);
return 0;
}
}
static void
enable_state_for_drawing_buffer (CoglVertexBuffer *buffer)
{
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 16:15:40 +00:00
GList *tmp;
GLenum gl_type;
#ifdef MAY_HAVE_PROGRAMABLE_GL
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 16:15:40 +00:00
GLuint generic_index = 0;
#endif
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 16:15:40 +00:00
gulong enable_flags = 0;
guint max_texcoord_attrib_unit = 0;
const GList *layers;
guint32 fallback_mask = 0;
guint32 disable_mask = ~0;
int i;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
if (buffer->new_attributes)
cogl_vertex_buffer_submit_real (buffer);
for (tmp = buffer->submitted_vbos; tmp != NULL; tmp = tmp->next)
{
CoglVertexBufferVBO *cogl_vbo = tmp->data;
GList *tmp2;
char *base;
const GLvoid *pointer;
if (cogl_get_features () & COGL_FEATURE_VBOS)
{
GE (glBindBuffer (GL_ARRAY_BUFFER,
GPOINTER_TO_UINT (cogl_vbo->vbo_name)));
base = 0;
}
else
base = cogl_vbo->vbo_name;
/* When GL VBOs are bing used then the "pointer" we pass to
* glColorPointer glVertexAttribPointer etc is actually an offset into
* the currently bound VBO.
*
* If we don't have VBO support though, then we must point into
* our fake client side VBO.
*/
for (tmp2 = cogl_vbo->attributes; tmp2 != NULL; tmp2 = tmp2->next)
{
CoglVertexBufferAttrib *attribute = tmp2->data;
CoglVertexBufferAttribFlags type =
attribute->flags & COGL_VERTEX_BUFFER_ATTRIB_FLAG_TYPE_MASK;
if (!(attribute->flags & COGL_VERTEX_BUFFER_ATTRIB_FLAG_ENABLED))
continue;
gl_type = get_gl_type_from_attribute_flags (attribute->flags);
switch (type)
{
case COGL_VERTEX_BUFFER_ATTRIB_FLAG_COLOR_ARRAY:
enable_flags |= COGL_ENABLE_COLOR_ARRAY | COGL_ENABLE_BLEND;
/* GE (glEnableClientState (GL_COLOR_ARRAY)); */
pointer = (const GLvoid *)(base + attribute->u.vbo_offset);
GE (glColorPointer (attribute->n_components,
gl_type,
attribute->stride,
pointer));
break;
case COGL_VERTEX_BUFFER_ATTRIB_FLAG_NORMAL_ARRAY:
/* FIXME: go through cogl cache to enable normal array */
GE (glEnableClientState (GL_NORMAL_ARRAY));
pointer = (const GLvoid *)(base + attribute->u.vbo_offset);
GE (glNormalPointer (gl_type,
attribute->stride,
pointer));
break;
case COGL_VERTEX_BUFFER_ATTRIB_FLAG_TEXTURE_COORD_ARRAY:
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 16:15:40 +00:00
GE (glClientActiveTexture (GL_TEXTURE0 +
attribute->texture_unit));
GE (glEnableClientState (GL_TEXTURE_COORD_ARRAY));
pointer = (const GLvoid *)(base + attribute->u.vbo_offset);
GE (glTexCoordPointer (attribute->n_components,
gl_type,
attribute->stride,
pointer));
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 16:15:40 +00:00
if (attribute->texture_unit > max_texcoord_attrib_unit)
max_texcoord_attrib_unit = attribute->texture_unit;
disable_mask &= ~(1 << attribute->texture_unit);
break;
case COGL_VERTEX_BUFFER_ATTRIB_FLAG_VERTEX_ARRAY:
enable_flags |= COGL_ENABLE_VERTEX_ARRAY;
/* GE (glEnableClientState (GL_VERTEX_ARRAY)); */
pointer = (const GLvoid *)(base + attribute->u.vbo_offset);
GE (glVertexPointer (attribute->n_components,
gl_type,
attribute->stride,
pointer));
break;
case COGL_VERTEX_BUFFER_ATTRIB_FLAG_CUSTOM_ARRAY:
{
#ifdef MAY_HAVE_PROGRAMABLE_GL
GLboolean normalized = GL_FALSE;
if (attribute->flags &
COGL_VERTEX_BUFFER_ATTRIB_FLAG_NORMALIZED)
normalized = GL_TRUE;
/* FIXME: go through cogl cache to enable generic array */
GE (glEnableVertexAttribArray (generic_index++));
pointer = (const GLvoid *)(base + attribute->u.vbo_offset);
GE (glVertexAttribPointer (generic_index,
attribute->n_components,
gl_type,
normalized,
attribute->stride,
pointer));
#endif
}
break;
default:
g_warning ("Unrecognised attribute type 0x%08x", type);
}
}
}
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 16:15:40 +00:00
layers = cogl_material_get_layers (ctx->source_material);
for (tmp = (GList *)layers, i = 0;
tmp != NULL && i <= max_texcoord_attrib_unit;
tmp = tmp->next, i++)
{
CoglHandle layer = (CoglHandle)tmp->data;
CoglHandle tex_handle = cogl_material_layer_get_texture (layer);
CoglTexture *texture =
_cogl_texture_pointer_from_handle (tex_handle);
if (cogl_texture_is_sliced (tex_handle)
|| _cogl_texture_span_has_waste (texture, 0, 0))
{
g_warning ("Disabling layer %d of the current source material, "
"because texturing with the vertex buffer API is not "
"currently supported using sliced textures, or textures "
"with waste\n", i);
/* XXX: maybe we can add a mechanism for users to forcibly use
* textures with waste where it would be their responsability to use
* texture coords in the range [0,1] such that sampling outside isn't
* required. We can then use a texture matrix (or a modification of
* the users own matrix) to map 1 to the edge of the texture data.
*
* Potentially, given the same guarantee as above we could also
* support a single sliced layer too. We would have to redraw the
* vertices once for each layer, each time with a fiddled texture
* matrix.
*/
fallback_mask |= (1 << i);
}
}
_cogl_material_flush_gl_state (ctx->source_material,
COGL_MATERIAL_FLUSH_FALLBACK_MASK,
fallback_mask,
COGL_MATERIAL_FLUSH_DISABLE_MASK,
disable_mask,
NULL);
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 16:15:40 +00:00
enable_flags |= _cogl_material_get_cogl_enable_flags (ctx->source_material);
if (ctx->enable_backface_culling)
enable_flags |= COGL_ENABLE_BACKFACE_CULLING;
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 16:15:40 +00:00
cogl_enable (enable_flags);
}
static void
disable_state_for_drawing_buffer (CoglVertexBuffer *buffer)
{
GList *tmp;
GLenum gl_type;
#ifdef MAY_HAVE_PROGRAMABLE_GL
GLuint generic_index = 0;
#endif
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
/* Disable all the client state that cogl doesn't currently know
* about:
*/
if (cogl_get_features () & COGL_FEATURE_VBOS)
GE (glBindBuffer (GL_ARRAY_BUFFER, 0));
for (tmp = buffer->submitted_vbos; tmp != NULL; tmp = tmp->next)
{
CoglVertexBufferVBO *cogl_vbo = tmp->data;
GList *tmp2;
for (tmp2 = cogl_vbo->attributes; tmp2 != NULL; tmp2 = tmp2->next)
{
CoglVertexBufferAttrib *attribute = tmp2->data;
CoglVertexBufferAttribFlags type =
attribute->flags & COGL_VERTEX_BUFFER_ATTRIB_FLAG_TYPE_MASK;
if (!(attribute->flags & COGL_VERTEX_BUFFER_ATTRIB_FLAG_ENABLED))
continue;
gl_type = get_gl_type_from_attribute_flags(attribute->flags);
switch (type)
{
case COGL_VERTEX_BUFFER_ATTRIB_FLAG_COLOR_ARRAY:
/* GE (glDisableClientState (GL_COLOR_ARRAY)); */
break;
case COGL_VERTEX_BUFFER_ATTRIB_FLAG_NORMAL_ARRAY:
/* FIXME: go through cogl cache to enable normal array */
GE (glDisableClientState (GL_NORMAL_ARRAY));
break;
case COGL_VERTEX_BUFFER_ATTRIB_FLAG_TEXTURE_COORD_ARRAY:
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 16:15:40 +00:00
GE (glClientActiveTexture (GL_TEXTURE0 +
attribute->texture_unit));
GE (glDisableClientState (GL_TEXTURE_COORD_ARRAY));
break;
case COGL_VERTEX_BUFFER_ATTRIB_FLAG_VERTEX_ARRAY:
/* GE (glDisableClientState (GL_VERTEX_ARRAY)); */
break;
case COGL_VERTEX_BUFFER_ATTRIB_FLAG_CUSTOM_ARRAY:
#ifdef MAY_HAVE_PROGRAMABLE_GL
/* FIXME: go through cogl cache to enable generic array */
GE (glDisableVertexAttribArray (generic_index++));
#endif
break;
default:
g_warning ("Unrecognised attribute type 0x%08x", type);
}
}
}
}
void
cogl_vertex_buffer_draw (CoglHandle handle,
CoglVerticesMode mode,
int first,
int count)
{
CoglVertexBuffer *buffer;
if (!cogl_is_vertex_buffer (handle))
return;
buffer = _cogl_vertex_buffer_pointer_from_handle (handle);
cogl_clip_ensure ();
_cogl_current_matrix_state_flush ();
enable_state_for_drawing_buffer (buffer);
/* FIXME: flush cogl cache */
GE (glDrawArrays (mode, first, count));
disable_state_for_drawing_buffer (buffer);
}
static int
get_indices_type_size (GLuint indices_type)
{
if (indices_type == GL_UNSIGNED_BYTE)
return sizeof (GLubyte);
if (indices_type == GL_UNSIGNED_SHORT)
return sizeof (GLushort);
else
{
g_critical ("Unknown indices type %d\n", indices_type);
return 0;
}
}
CoglHandle
cogl_vertex_buffer_indices_new (CoglIndicesType indices_type,
const void *indices_array,
int indices_len)
{
gboolean fallback =
(cogl_get_features () & COGL_FEATURE_VBOS) ? FALSE : TRUE;
size_t indices_bytes;
CoglVertexBufferIndices *indices;
_COGL_GET_CONTEXT (ctx, 0);
indices = g_slice_alloc (sizeof (CoglVertexBufferIndices));
if (indices_type == COGL_INDICES_TYPE_UNSIGNED_BYTE)
indices->type = GL_UNSIGNED_BYTE;
else if (indices_type == COGL_INDICES_TYPE_UNSIGNED_SHORT)
indices->type = GL_UNSIGNED_SHORT;
else
{
g_critical ("unknown indices type %d", indices_type);
g_slice_free (CoglVertexBufferIndices, indices);
return 0;
}
indices_bytes = get_indices_type_size (indices->type) * indices_len;
if (fallback)
{
indices->vbo_name = g_malloc (indices_len);
memcpy (indices->vbo_name, indices_array, indices_bytes);
}
else
{
GE (glGenBuffers (1, (GLuint *)&indices->vbo_name));
GE (glBindBuffer (GL_ELEMENT_ARRAY_BUFFER,
GPOINTER_TO_UINT (indices->vbo_name)));
GE (glBufferData (GL_ELEMENT_ARRAY_BUFFER,
indices_bytes,
indices_array,
GL_STATIC_DRAW));
GE (glBindBuffer (GL_ELEMENT_ARRAY_BUFFER, 0));
}
return _cogl_vertex_buffer_indices_handle_new (indices);
}
void
_cogl_vertex_buffer_indices_free (CoglVertexBufferIndices *indices)
{
gboolean fallback =
(cogl_get_features () & COGL_FEATURE_VBOS) ? FALSE : TRUE;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
if (fallback)
g_free (indices->vbo_name);
else
GE (glDeleteBuffers (1, (GLuint *)&indices->vbo_name));
g_slice_free (CoglVertexBufferIndices, indices);
}
void
cogl_vertex_buffer_draw_elements (CoglHandle handle,
CoglVerticesMode mode,
CoglHandle indices_handle,
int min_index,
int max_index,
int indices_offset,
int count)
{
CoglVertexBuffer *buffer;
gboolean fallback =
(cogl_get_features () & COGL_FEATURE_VBOS) ? FALSE : TRUE;
size_t byte_offset;
CoglVertexBufferIndices *indices = NULL;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
if (!cogl_is_vertex_buffer (handle))
return;
buffer = _cogl_vertex_buffer_pointer_from_handle (handle);
if (!cogl_is_vertex_buffer_indices (indices_handle))
return;
indices = _cogl_vertex_buffer_indices_pointer_from_handle (indices_handle);
cogl_clip_ensure ();
_cogl_current_matrix_state_flush ();
enable_state_for_drawing_buffer (buffer);
byte_offset = indices_offset * get_indices_type_size (indices->type);
if (fallback)
byte_offset = (size_t)(((char *)indices->vbo_name) + byte_offset);
else
GE (glBindBuffer (GL_ELEMENT_ARRAY_BUFFER,
GPOINTER_TO_UINT (indices->vbo_name)));
/* FIXME: flush cogl cache */
GE (glDrawRangeElements (mode, min_index, max_index,
count, indices->type, (void *)byte_offset));
disable_state_for_drawing_buffer (buffer);
GE (glBindBuffer (GL_ELEMENT_ARRAY_BUFFER, 0));
}
static void
_cogl_vertex_buffer_free (CoglVertexBuffer *buffer)
{
GList *tmp;
for (tmp = buffer->submitted_vbos; tmp != NULL; tmp = tmp->next)
cogl_vertex_buffer_vbo_free (tmp->data, TRUE);
g_list_free (buffer->submitted_vbos);
for (tmp = buffer->new_attributes; tmp != NULL; tmp = tmp->next)
cogl_vertex_buffer_attribute_free (tmp->data);
g_list_free (buffer->new_attributes);
g_slice_free (CoglVertexBuffer, buffer);
}
CoglHandle
cogl_vertex_buffer_indices_get_for_quads (guint n_indices)
{
_COGL_GET_CONTEXT (ctx, COGL_INVALID_HANDLE);
/* Check if the indices would fit in a byte array */
if (n_indices <= 256 / 4 * 6)
{
/* Generate the byte array if we haven't already */
if (ctx->quad_indices_byte == COGL_INVALID_HANDLE)
{
guint8 *byte_array = g_malloc (256 / 4 * 6 * sizeof (guint8));
guint8 *p = byte_array;
int i, vert_num = 0;
for (i = 0; i < 256 / 4; i++)
{
*(p++) = vert_num + 0;
*(p++) = vert_num + 1;
*(p++) = vert_num + 2;
*(p++) = vert_num + 0;
*(p++) = vert_num + 2;
*(p++) = vert_num + 3;
vert_num += 4;
}
ctx->quad_indices_byte
= cogl_vertex_buffer_indices_new (COGL_INDICES_TYPE_UNSIGNED_BYTE,
byte_array,
256 / 4 * 6);
g_free (byte_array);
}
return ctx->quad_indices_byte;
}
else
{
if (ctx->quad_indices_short_len < n_indices)
{
guint16 *short_array;
guint16 *p;
int i, vert_num = 0;
if (ctx->quad_indices_short != COGL_INVALID_HANDLE)
cogl_handle_unref (ctx->quad_indices_short);
/* Pick a power of two >= MAX (512, n_indices) */
if (ctx->quad_indices_short_len == 0)
ctx->quad_indices_short_len = 512;
while (ctx->quad_indices_short_len < n_indices)
ctx->quad_indices_short_len *= 2;
/* Over-allocate to generate a whole number of quads */
p = short_array = g_malloc ((ctx->quad_indices_short_len
+ 5) / 6 * 6
* sizeof (guint16));
/* Fill in the complete quads */
for (i = 0; i < ctx->quad_indices_short_len; i += 6)
{
*(p++) = vert_num + 0;
*(p++) = vert_num + 1;
*(p++) = vert_num + 2;
*(p++) = vert_num + 0;
*(p++) = vert_num + 2;
*(p++) = vert_num + 3;
vert_num += 4;
}
ctx->quad_indices_short
= cogl_vertex_buffer_indices_new (COGL_INDICES_TYPE_UNSIGNED_SHORT,
short_array,
ctx->quad_indices_short_len);
g_free (short_array);
}
return ctx->quad_indices_short;
}
}