mutter/cogl/cogl-texture-3d.c

617 lines
20 KiB
C
Raw Normal View History

Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
/*
* Cogl
*
* An object oriented GL/GLES Abstraction/Utility Layer
*
* Copyright (C) 2010 Intel Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*
* Authors:
* Neil Roberts <neil@linux.intel.com>
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "cogl.h"
#include "cogl-internal.h"
#include "cogl-util.h"
#include "cogl-texture-private.h"
#include "cogl-texture-3d-private.h"
#include "cogl-texture-driver.h"
#include "cogl-context-private.h"
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
#include "cogl-handle.h"
#include "cogl-journal-private.h"
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 18:54:57 +01:00
#include "cogl-pipeline-private.h"
#include "cogl-pipeline-opengl-private.h"
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
#include <string.h>
#include <math.h>
/* These might not be defined on GLES */
#ifndef GL_TEXTURE_3D
#define GL_TEXTURE_3D 0x806F
#endif
#ifndef GL_TEXTURE_WRAP_R
#define GL_TEXTURE_WRAP_R 0x8072
#endif
static void _cogl_texture_3d_free (CoglTexture3D *tex_3d);
COGL_TEXTURE_DEFINE (Texture3D, texture_3d);
static const CoglTextureVtable cogl_texture_3d_vtable;
static void
_cogl_texture_3d_set_wrap_mode_parameters (CoglTexture *tex,
GLenum wrap_mode_s,
GLenum wrap_mode_t,
GLenum wrap_mode_p)
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
{
CoglTexture3D *tex_3d = COGL_TEXTURE_3D (tex);
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
/* Only set the wrap mode if it's different from the current value
to avoid too many GL calls. */
if (tex_3d->wrap_mode_s != wrap_mode_s ||
tex_3d->wrap_mode_t != wrap_mode_t ||
tex_3d->wrap_mode_p != wrap_mode_p)
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
{
_cogl_bind_gl_texture_transient (GL_TEXTURE_3D,
tex_3d->gl_texture,
FALSE);
GE( ctx, glTexParameteri (GL_TEXTURE_3D,
GL_TEXTURE_WRAP_S,
wrap_mode_s) );
GE( ctx, glTexParameteri (GL_TEXTURE_3D,
GL_TEXTURE_WRAP_T,
wrap_mode_t) );
GE( ctx, glTexParameteri (GL_TEXTURE_3D,
GL_TEXTURE_WRAP_R,
wrap_mode_p) );
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
tex_3d->wrap_mode_s = wrap_mode_s;
tex_3d->wrap_mode_t = wrap_mode_t;
tex_3d->wrap_mode_p = wrap_mode_p;
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
}
}
static void
_cogl_texture_3d_free (CoglTexture3D *tex_3d)
{
_cogl_delete_gl_texture (tex_3d->gl_texture);
/* Chain up */
_cogl_texture_free (COGL_TEXTURE (tex_3d));
}
static CoglTexture3D *
_cogl_texture_3d_create_base (unsigned int width,
unsigned int height,
unsigned int depth,
CoglTextureFlags flags,
CoglPixelFormat internal_format)
{
CoglTexture3D *tex_3d = g_new (CoglTexture3D, 1);
CoglTexture *tex = COGL_TEXTURE (tex_3d);
_cogl_texture_init (tex, &cogl_texture_3d_vtable);
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
tex_3d->width = width;
tex_3d->height = height;
tex_3d->depth = depth;
tex_3d->mipmaps_dirty = TRUE;
tex_3d->auto_mipmap = (flags & COGL_TEXTURE_NO_AUTO_MIPMAP) == 0;
/* We default to GL_LINEAR for both filters */
tex_3d->min_filter = GL_LINEAR;
tex_3d->mag_filter = GL_LINEAR;
/* Wrap mode not yet set */
tex_3d->wrap_mode_s = GL_FALSE;
tex_3d->wrap_mode_t = GL_FALSE;
tex_3d->wrap_mode_p = GL_FALSE;
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
tex_3d->format = internal_format;
return tex_3d;
}
static gboolean
_cogl_texture_3d_can_create (unsigned int width,
unsigned int height,
unsigned int depth,
CoglTextureFlags flags,
CoglPixelFormat internal_format,
GError **error)
{
GLenum gl_intformat;
GLenum gl_type;
_COGL_GET_CONTEXT (ctx, FALSE);
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
/* This should only happen on GLES */
if (!cogl_has_feature (ctx, COGL_FEATURE_ID_TEXTURE_3D))
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
{
g_set_error (error,
COGL_ERROR,
COGL_ERROR_UNSUPPORTED,
"3D textures are not supported by the GPU");
return FALSE;
}
/* If NPOT textures aren't supported then the size must be a power
of two */
if (!cogl_has_feature (ctx, COGL_FEATURE_ID_TEXTURE_NPOT) &&
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
(!_cogl_util_is_pot (width) ||
!_cogl_util_is_pot (height) ||
!_cogl_util_is_pot (depth)))
{
g_set_error (error,
COGL_ERROR,
COGL_ERROR_UNSUPPORTED,
"A non-power-of-two size was requested but this is not "
"supported by the GPU");
return FALSE;
}
ctx->texture_driver->pixel_format_to_gl (internal_format,
&gl_intformat,
NULL,
&gl_type);
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
/* Check that the driver can create a texture with that size */
if (!ctx->texture_driver->size_supported_3d (GL_TEXTURE_3D,
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
gl_intformat,
gl_type,
width,
height,
depth))
{
g_set_error (error,
COGL_ERROR,
COGL_ERROR_UNSUPPORTED,
"The requested dimensions are not supported by the GPU");
return FALSE;
}
return TRUE;
}
CoglHandle
cogl_texture_3d_new_with_size (unsigned int width,
unsigned int height,
unsigned int depth,
CoglTextureFlags flags,
CoglPixelFormat internal_format,
GError **error)
{
CoglTexture3D *tex_3d;
GLenum gl_intformat;
GLenum gl_format;
GLenum gl_type;
_COGL_GET_CONTEXT (ctx, COGL_INVALID_HANDLE);
/* Since no data, we need some internal format */
if (internal_format == COGL_PIXEL_FORMAT_ANY)
internal_format = COGL_PIXEL_FORMAT_RGBA_8888_PRE;
if (!_cogl_texture_3d_can_create (width, height, depth,
flags, internal_format,
error))
return COGL_INVALID_HANDLE;
internal_format = ctx->texture_driver->pixel_format_to_gl (internal_format,
&gl_intformat,
&gl_format,
&gl_type);
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
tex_3d = _cogl_texture_3d_create_base (width, height, depth,
flags, internal_format);
ctx->texture_driver->gen (GL_TEXTURE_3D, 1, &tex_3d->gl_texture);
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
_cogl_bind_gl_texture_transient (GL_TEXTURE_3D,
tex_3d->gl_texture,
FALSE);
GE( ctx, glTexImage3D (GL_TEXTURE_3D, 0, gl_intformat,
width, height, depth, 0, gl_format, gl_type, NULL) );
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
return _cogl_texture_3d_handle_new (tex_3d);
}
CoglHandle
cogl-bitmap: Encapsulate the CoglBitmap even internally The CoglBitmap struct is now only defined within cogl-bitmap.c so that all of its members can now only be accessed with accessor functions. To get to the data pointer for the bitmap image you must first call _cogl_bitmap_map and later call _cogl_bitmap_unmap. The map function takes the same arguments as cogl_pixel_array_map so that eventually we can make a bitmap optionally internally divert to a pixel array. There is a _cogl_bitmap_new_from_data function which constructs a new bitmap object and takes ownership of the data pointer. The function gets passed a destroy callback which gets called when the bitmap is freed. This is similar to how gdk_pixbuf_new_from_data works. Alternatively NULL can be passed for the destroy function which means that the caller will manage the life of the pointer (but must guarantee that it stays alive at least until the bitmap is freed). This mechanism is used instead of the old approach of creating a CoglBitmap struct on the stack and manually filling in the members. It could also later be used to create a CoglBitmap that owns a GdkPixbuf ref so that we don't necessarily have to copy the GdkPixbuf data when converting to a bitmap. There is also _cogl_bitmap_new_shared. This creates a bitmap using a reference to another CoglBitmap for the data. This is a bit of a hack but it is needed by the atlas texture backend which wants to divert the set_region virtual to another texture but it needs to override the format of the bitmap to ignore the premult flag.
2010-07-07 18:44:16 +01:00
_cogl_texture_3d_new_from_bitmap (CoglBitmap *bmp,
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
unsigned int height,
unsigned int depth,
CoglTextureFlags flags,
CoglPixelFormat internal_format,
GError **error)
{
cogl-bitmap: Encapsulate the CoglBitmap even internally The CoglBitmap struct is now only defined within cogl-bitmap.c so that all of its members can now only be accessed with accessor functions. To get to the data pointer for the bitmap image you must first call _cogl_bitmap_map and later call _cogl_bitmap_unmap. The map function takes the same arguments as cogl_pixel_array_map so that eventually we can make a bitmap optionally internally divert to a pixel array. There is a _cogl_bitmap_new_from_data function which constructs a new bitmap object and takes ownership of the data pointer. The function gets passed a destroy callback which gets called when the bitmap is freed. This is similar to how gdk_pixbuf_new_from_data works. Alternatively NULL can be passed for the destroy function which means that the caller will manage the life of the pointer (but must guarantee that it stays alive at least until the bitmap is freed). This mechanism is used instead of the old approach of creating a CoglBitmap struct on the stack and manually filling in the members. It could also later be used to create a CoglBitmap that owns a GdkPixbuf ref so that we don't necessarily have to copy the GdkPixbuf data when converting to a bitmap. There is also _cogl_bitmap_new_shared. This creates a bitmap using a reference to another CoglBitmap for the data. This is a bit of a hack but it is needed by the atlas texture backend which wants to divert the set_region virtual to another texture but it needs to override the format of the bitmap to ignore the premult flag.
2010-07-07 18:44:16 +01:00
CoglTexture3D *tex_3d;
CoglBitmap *dst_bmp;
CoglPixelFormat bmp_format;
unsigned int bmp_width;
GLenum gl_intformat;
GLenum gl_format;
GLenum gl_type;
guint8 *data;
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
_COGL_GET_CONTEXT (ctx, COGL_INVALID_HANDLE);
cogl-bitmap: Encapsulate the CoglBitmap even internally The CoglBitmap struct is now only defined within cogl-bitmap.c so that all of its members can now only be accessed with accessor functions. To get to the data pointer for the bitmap image you must first call _cogl_bitmap_map and later call _cogl_bitmap_unmap. The map function takes the same arguments as cogl_pixel_array_map so that eventually we can make a bitmap optionally internally divert to a pixel array. There is a _cogl_bitmap_new_from_data function which constructs a new bitmap object and takes ownership of the data pointer. The function gets passed a destroy callback which gets called when the bitmap is freed. This is similar to how gdk_pixbuf_new_from_data works. Alternatively NULL can be passed for the destroy function which means that the caller will manage the life of the pointer (but must guarantee that it stays alive at least until the bitmap is freed). This mechanism is used instead of the old approach of creating a CoglBitmap struct on the stack and manually filling in the members. It could also later be used to create a CoglBitmap that owns a GdkPixbuf ref so that we don't necessarily have to copy the GdkPixbuf data when converting to a bitmap. There is also _cogl_bitmap_new_shared. This creates a bitmap using a reference to another CoglBitmap for the data. This is a bit of a hack but it is needed by the atlas texture backend which wants to divert the set_region virtual to another texture but it needs to override the format of the bitmap to ignore the premult flag.
2010-07-07 18:44:16 +01:00
bmp_width = _cogl_bitmap_get_width (bmp);
bmp_format = _cogl_bitmap_get_format (bmp);
internal_format = _cogl_texture_determine_internal_format (bmp_format,
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
internal_format);
cogl-bitmap: Encapsulate the CoglBitmap even internally The CoglBitmap struct is now only defined within cogl-bitmap.c so that all of its members can now only be accessed with accessor functions. To get to the data pointer for the bitmap image you must first call _cogl_bitmap_map and later call _cogl_bitmap_unmap. The map function takes the same arguments as cogl_pixel_array_map so that eventually we can make a bitmap optionally internally divert to a pixel array. There is a _cogl_bitmap_new_from_data function which constructs a new bitmap object and takes ownership of the data pointer. The function gets passed a destroy callback which gets called when the bitmap is freed. This is similar to how gdk_pixbuf_new_from_data works. Alternatively NULL can be passed for the destroy function which means that the caller will manage the life of the pointer (but must guarantee that it stays alive at least until the bitmap is freed). This mechanism is used instead of the old approach of creating a CoglBitmap struct on the stack and manually filling in the members. It could also later be used to create a CoglBitmap that owns a GdkPixbuf ref so that we don't necessarily have to copy the GdkPixbuf data when converting to a bitmap. There is also _cogl_bitmap_new_shared. This creates a bitmap using a reference to another CoglBitmap for the data. This is a bit of a hack but it is needed by the atlas texture backend which wants to divert the set_region virtual to another texture but it needs to override the format of the bitmap to ignore the premult flag.
2010-07-07 18:44:16 +01:00
if (!_cogl_texture_3d_can_create (bmp_width, height, depth,
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
flags, internal_format,
error))
return COGL_INVALID_HANDLE;
cogl-bitmap: Encapsulate the CoglBitmap even internally The CoglBitmap struct is now only defined within cogl-bitmap.c so that all of its members can now only be accessed with accessor functions. To get to the data pointer for the bitmap image you must first call _cogl_bitmap_map and later call _cogl_bitmap_unmap. The map function takes the same arguments as cogl_pixel_array_map so that eventually we can make a bitmap optionally internally divert to a pixel array. There is a _cogl_bitmap_new_from_data function which constructs a new bitmap object and takes ownership of the data pointer. The function gets passed a destroy callback which gets called when the bitmap is freed. This is similar to how gdk_pixbuf_new_from_data works. Alternatively NULL can be passed for the destroy function which means that the caller will manage the life of the pointer (but must guarantee that it stays alive at least until the bitmap is freed). This mechanism is used instead of the old approach of creating a CoglBitmap struct on the stack and manually filling in the members. It could also later be used to create a CoglBitmap that owns a GdkPixbuf ref so that we don't necessarily have to copy the GdkPixbuf data when converting to a bitmap. There is also _cogl_bitmap_new_shared. This creates a bitmap using a reference to another CoglBitmap for the data. This is a bit of a hack but it is needed by the atlas texture backend which wants to divert the set_region virtual to another texture but it needs to override the format of the bitmap to ignore the premult flag.
2010-07-07 18:44:16 +01:00
dst_bmp = _cogl_texture_prepare_for_upload (bmp,
internal_format,
&internal_format,
&gl_intformat,
&gl_format,
&gl_type);
if (dst_bmp == NULL)
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
{
g_set_error (error, COGL_BITMAP_ERROR, COGL_BITMAP_ERROR_FAILED,
"Bitmap conversion failed");
return COGL_INVALID_HANDLE;
}
cogl-bitmap: Encapsulate the CoglBitmap even internally The CoglBitmap struct is now only defined within cogl-bitmap.c so that all of its members can now only be accessed with accessor functions. To get to the data pointer for the bitmap image you must first call _cogl_bitmap_map and later call _cogl_bitmap_unmap. The map function takes the same arguments as cogl_pixel_array_map so that eventually we can make a bitmap optionally internally divert to a pixel array. There is a _cogl_bitmap_new_from_data function which constructs a new bitmap object and takes ownership of the data pointer. The function gets passed a destroy callback which gets called when the bitmap is freed. This is similar to how gdk_pixbuf_new_from_data works. Alternatively NULL can be passed for the destroy function which means that the caller will manage the life of the pointer (but must guarantee that it stays alive at least until the bitmap is freed). This mechanism is used instead of the old approach of creating a CoglBitmap struct on the stack and manually filling in the members. It could also later be used to create a CoglBitmap that owns a GdkPixbuf ref so that we don't necessarily have to copy the GdkPixbuf data when converting to a bitmap. There is also _cogl_bitmap_new_shared. This creates a bitmap using a reference to another CoglBitmap for the data. This is a bit of a hack but it is needed by the atlas texture backend which wants to divert the set_region virtual to another texture but it needs to override the format of the bitmap to ignore the premult flag.
2010-07-07 18:44:16 +01:00
tex_3d = _cogl_texture_3d_create_base (bmp_width, height, depth,
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
flags, internal_format);
/* Keep a copy of the first pixel so that if glGenerateMipmap isn't
supported we can fallback to using GL_GENERATE_MIPMAP */
if (!cogl_has_feature (ctx, COGL_FEATURE_ID_OFFSCREEN) &&
cogl-bitmap: Encapsulate the CoglBitmap even internally The CoglBitmap struct is now only defined within cogl-bitmap.c so that all of its members can now only be accessed with accessor functions. To get to the data pointer for the bitmap image you must first call _cogl_bitmap_map and later call _cogl_bitmap_unmap. The map function takes the same arguments as cogl_pixel_array_map so that eventually we can make a bitmap optionally internally divert to a pixel array. There is a _cogl_bitmap_new_from_data function which constructs a new bitmap object and takes ownership of the data pointer. The function gets passed a destroy callback which gets called when the bitmap is freed. This is similar to how gdk_pixbuf_new_from_data works. Alternatively NULL can be passed for the destroy function which means that the caller will manage the life of the pointer (but must guarantee that it stays alive at least until the bitmap is freed). This mechanism is used instead of the old approach of creating a CoglBitmap struct on the stack and manually filling in the members. It could also later be used to create a CoglBitmap that owns a GdkPixbuf ref so that we don't necessarily have to copy the GdkPixbuf data when converting to a bitmap. There is also _cogl_bitmap_new_shared. This creates a bitmap using a reference to another CoglBitmap for the data. This is a bit of a hack but it is needed by the atlas texture backend which wants to divert the set_region virtual to another texture but it needs to override the format of the bitmap to ignore the premult flag.
2010-07-07 18:44:16 +01:00
(data = _cogl_bitmap_map (dst_bmp,
COGL_BUFFER_ACCESS_READ, 0)))
{
tex_3d->first_pixel.gl_format = gl_format;
tex_3d->first_pixel.gl_type = gl_type;
memcpy (tex_3d->first_pixel.data, data,
_cogl_get_format_bpp (_cogl_bitmap_get_format (dst_bmp)));
_cogl_bitmap_unmap (dst_bmp);
}
ctx->texture_driver->gen (GL_TEXTURE_3D, 1, &tex_3d->gl_texture);
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
ctx->texture_driver->upload_to_gl_3d (GL_TEXTURE_3D,
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
tex_3d->gl_texture,
FALSE, /* is_foreign */
height,
depth,
cogl-bitmap: Encapsulate the CoglBitmap even internally The CoglBitmap struct is now only defined within cogl-bitmap.c so that all of its members can now only be accessed with accessor functions. To get to the data pointer for the bitmap image you must first call _cogl_bitmap_map and later call _cogl_bitmap_unmap. The map function takes the same arguments as cogl_pixel_array_map so that eventually we can make a bitmap optionally internally divert to a pixel array. There is a _cogl_bitmap_new_from_data function which constructs a new bitmap object and takes ownership of the data pointer. The function gets passed a destroy callback which gets called when the bitmap is freed. This is similar to how gdk_pixbuf_new_from_data works. Alternatively NULL can be passed for the destroy function which means that the caller will manage the life of the pointer (but must guarantee that it stays alive at least until the bitmap is freed). This mechanism is used instead of the old approach of creating a CoglBitmap struct on the stack and manually filling in the members. It could also later be used to create a CoglBitmap that owns a GdkPixbuf ref so that we don't necessarily have to copy the GdkPixbuf data when converting to a bitmap. There is also _cogl_bitmap_new_shared. This creates a bitmap using a reference to another CoglBitmap for the data. This is a bit of a hack but it is needed by the atlas texture backend which wants to divert the set_region virtual to another texture but it needs to override the format of the bitmap to ignore the premult flag.
2010-07-07 18:44:16 +01:00
dst_bmp,
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
gl_intformat,
gl_format,
gl_type);
tex_3d->gl_format = gl_intformat;
cogl-bitmap: Encapsulate the CoglBitmap even internally The CoglBitmap struct is now only defined within cogl-bitmap.c so that all of its members can now only be accessed with accessor functions. To get to the data pointer for the bitmap image you must first call _cogl_bitmap_map and later call _cogl_bitmap_unmap. The map function takes the same arguments as cogl_pixel_array_map so that eventually we can make a bitmap optionally internally divert to a pixel array. There is a _cogl_bitmap_new_from_data function which constructs a new bitmap object and takes ownership of the data pointer. The function gets passed a destroy callback which gets called when the bitmap is freed. This is similar to how gdk_pixbuf_new_from_data works. Alternatively NULL can be passed for the destroy function which means that the caller will manage the life of the pointer (but must guarantee that it stays alive at least until the bitmap is freed). This mechanism is used instead of the old approach of creating a CoglBitmap struct on the stack and manually filling in the members. It could also later be used to create a CoglBitmap that owns a GdkPixbuf ref so that we don't necessarily have to copy the GdkPixbuf data when converting to a bitmap. There is also _cogl_bitmap_new_shared. This creates a bitmap using a reference to another CoglBitmap for the data. This is a bit of a hack but it is needed by the atlas texture backend which wants to divert the set_region virtual to another texture but it needs to override the format of the bitmap to ignore the premult flag.
2010-07-07 18:44:16 +01:00
cogl_object_unref (dst_bmp);
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
return _cogl_texture_3d_handle_new (tex_3d);
}
CoglHandle
cogl_texture_3d_new_from_data (unsigned int width,
unsigned int height,
unsigned int depth,
CoglTextureFlags flags,
CoglPixelFormat format,
CoglPixelFormat internal_format,
unsigned int rowstride,
unsigned int image_stride,
const guint8 *data,
GError **error)
{
cogl-bitmap: Encapsulate the CoglBitmap even internally The CoglBitmap struct is now only defined within cogl-bitmap.c so that all of its members can now only be accessed with accessor functions. To get to the data pointer for the bitmap image you must first call _cogl_bitmap_map and later call _cogl_bitmap_unmap. The map function takes the same arguments as cogl_pixel_array_map so that eventually we can make a bitmap optionally internally divert to a pixel array. There is a _cogl_bitmap_new_from_data function which constructs a new bitmap object and takes ownership of the data pointer. The function gets passed a destroy callback which gets called when the bitmap is freed. This is similar to how gdk_pixbuf_new_from_data works. Alternatively NULL can be passed for the destroy function which means that the caller will manage the life of the pointer (but must guarantee that it stays alive at least until the bitmap is freed). This mechanism is used instead of the old approach of creating a CoglBitmap struct on the stack and manually filling in the members. It could also later be used to create a CoglBitmap that owns a GdkPixbuf ref so that we don't necessarily have to copy the GdkPixbuf data when converting to a bitmap. There is also _cogl_bitmap_new_shared. This creates a bitmap using a reference to another CoglBitmap for the data. This is a bit of a hack but it is needed by the atlas texture backend which wants to divert the set_region virtual to another texture but it needs to override the format of the bitmap to ignore the premult flag.
2010-07-07 18:44:16 +01:00
CoglBitmap *bitmap;
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
CoglHandle ret;
/* These are considered a programmer errors so we won't set a
GError. It would be nice if this was a _COGL_RETURN_IF_FAIL but the
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
rest of Cogl isn't using that */
if (format == COGL_PIXEL_FORMAT_ANY)
return COGL_INVALID_HANDLE;
if (data == NULL)
return COGL_INVALID_HANDLE;
/* Rowstride from width if not given */
if (rowstride == 0)
rowstride = width * _cogl_get_format_bpp (format);
/* Image stride from height and rowstride if not given */
if (image_stride == 0)
image_stride = height * rowstride;
if (image_stride < rowstride * height)
return COGL_INVALID_HANDLE;
/* GL doesn't support uploading when the image_stride isn't a
multiple of the rowstride. If this happens we'll just pack the
image into a new bitmap. The documentation for this function
recommends avoiding this situation. */
if (image_stride % rowstride != 0)
{
int z, y;
cogl-bitmap: Encapsulate the CoglBitmap even internally The CoglBitmap struct is now only defined within cogl-bitmap.c so that all of its members can now only be accessed with accessor functions. To get to the data pointer for the bitmap image you must first call _cogl_bitmap_map and later call _cogl_bitmap_unmap. The map function takes the same arguments as cogl_pixel_array_map so that eventually we can make a bitmap optionally internally divert to a pixel array. There is a _cogl_bitmap_new_from_data function which constructs a new bitmap object and takes ownership of the data pointer. The function gets passed a destroy callback which gets called when the bitmap is freed. This is similar to how gdk_pixbuf_new_from_data works. Alternatively NULL can be passed for the destroy function which means that the caller will manage the life of the pointer (but must guarantee that it stays alive at least until the bitmap is freed). This mechanism is used instead of the old approach of creating a CoglBitmap struct on the stack and manually filling in the members. It could also later be used to create a CoglBitmap that owns a GdkPixbuf ref so that we don't necessarily have to copy the GdkPixbuf data when converting to a bitmap. There is also _cogl_bitmap_new_shared. This creates a bitmap using a reference to another CoglBitmap for the data. This is a bit of a hack but it is needed by the atlas texture backend which wants to divert the set_region virtual to another texture but it needs to override the format of the bitmap to ignore the premult flag.
2010-07-07 18:44:16 +01:00
int bmp_rowstride = _cogl_get_format_bpp (format) * width;
guint8 *bmp_data = g_malloc (bmp_rowstride * height * depth);
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
cogl-bitmap: Encapsulate the CoglBitmap even internally The CoglBitmap struct is now only defined within cogl-bitmap.c so that all of its members can now only be accessed with accessor functions. To get to the data pointer for the bitmap image you must first call _cogl_bitmap_map and later call _cogl_bitmap_unmap. The map function takes the same arguments as cogl_pixel_array_map so that eventually we can make a bitmap optionally internally divert to a pixel array. There is a _cogl_bitmap_new_from_data function which constructs a new bitmap object and takes ownership of the data pointer. The function gets passed a destroy callback which gets called when the bitmap is freed. This is similar to how gdk_pixbuf_new_from_data works. Alternatively NULL can be passed for the destroy function which means that the caller will manage the life of the pointer (but must guarantee that it stays alive at least until the bitmap is freed). This mechanism is used instead of the old approach of creating a CoglBitmap struct on the stack and manually filling in the members. It could also later be used to create a CoglBitmap that owns a GdkPixbuf ref so that we don't necessarily have to copy the GdkPixbuf data when converting to a bitmap. There is also _cogl_bitmap_new_shared. This creates a bitmap using a reference to another CoglBitmap for the data. This is a bit of a hack but it is needed by the atlas texture backend which wants to divert the set_region virtual to another texture but it needs to override the format of the bitmap to ignore the premult flag.
2010-07-07 18:44:16 +01:00
bitmap = _cogl_bitmap_new_from_data (bmp_data,
format,
width,
depth * height,
bmp_rowstride,
(CoglBitmapDestroyNotify) g_free,
NULL /* destroy_fn_data */);
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
/* Copy all of the images in */
for (z = 0; z < depth; z++)
for (y = 0; y < height; y++)
cogl-bitmap: Encapsulate the CoglBitmap even internally The CoglBitmap struct is now only defined within cogl-bitmap.c so that all of its members can now only be accessed with accessor functions. To get to the data pointer for the bitmap image you must first call _cogl_bitmap_map and later call _cogl_bitmap_unmap. The map function takes the same arguments as cogl_pixel_array_map so that eventually we can make a bitmap optionally internally divert to a pixel array. There is a _cogl_bitmap_new_from_data function which constructs a new bitmap object and takes ownership of the data pointer. The function gets passed a destroy callback which gets called when the bitmap is freed. This is similar to how gdk_pixbuf_new_from_data works. Alternatively NULL can be passed for the destroy function which means that the caller will manage the life of the pointer (but must guarantee that it stays alive at least until the bitmap is freed). This mechanism is used instead of the old approach of creating a CoglBitmap struct on the stack and manually filling in the members. It could also later be used to create a CoglBitmap that owns a GdkPixbuf ref so that we don't necessarily have to copy the GdkPixbuf data when converting to a bitmap. There is also _cogl_bitmap_new_shared. This creates a bitmap using a reference to another CoglBitmap for the data. This is a bit of a hack but it is needed by the atlas texture backend which wants to divert the set_region virtual to another texture but it needs to override the format of the bitmap to ignore the premult flag.
2010-07-07 18:44:16 +01:00
memcpy (bmp_data + (z * bmp_rowstride * height +
bmp_rowstride * y),
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
data + z * image_stride + rowstride * y,
cogl-bitmap: Encapsulate the CoglBitmap even internally The CoglBitmap struct is now only defined within cogl-bitmap.c so that all of its members can now only be accessed with accessor functions. To get to the data pointer for the bitmap image you must first call _cogl_bitmap_map and later call _cogl_bitmap_unmap. The map function takes the same arguments as cogl_pixel_array_map so that eventually we can make a bitmap optionally internally divert to a pixel array. There is a _cogl_bitmap_new_from_data function which constructs a new bitmap object and takes ownership of the data pointer. The function gets passed a destroy callback which gets called when the bitmap is freed. This is similar to how gdk_pixbuf_new_from_data works. Alternatively NULL can be passed for the destroy function which means that the caller will manage the life of the pointer (but must guarantee that it stays alive at least until the bitmap is freed). This mechanism is used instead of the old approach of creating a CoglBitmap struct on the stack and manually filling in the members. It could also later be used to create a CoglBitmap that owns a GdkPixbuf ref so that we don't necessarily have to copy the GdkPixbuf data when converting to a bitmap. There is also _cogl_bitmap_new_shared. This creates a bitmap using a reference to another CoglBitmap for the data. This is a bit of a hack but it is needed by the atlas texture backend which wants to divert the set_region virtual to another texture but it needs to override the format of the bitmap to ignore the premult flag.
2010-07-07 18:44:16 +01:00
bmp_rowstride);
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
}
else
cogl-bitmap: Encapsulate the CoglBitmap even internally The CoglBitmap struct is now only defined within cogl-bitmap.c so that all of its members can now only be accessed with accessor functions. To get to the data pointer for the bitmap image you must first call _cogl_bitmap_map and later call _cogl_bitmap_unmap. The map function takes the same arguments as cogl_pixel_array_map so that eventually we can make a bitmap optionally internally divert to a pixel array. There is a _cogl_bitmap_new_from_data function which constructs a new bitmap object and takes ownership of the data pointer. The function gets passed a destroy callback which gets called when the bitmap is freed. This is similar to how gdk_pixbuf_new_from_data works. Alternatively NULL can be passed for the destroy function which means that the caller will manage the life of the pointer (but must guarantee that it stays alive at least until the bitmap is freed). This mechanism is used instead of the old approach of creating a CoglBitmap struct on the stack and manually filling in the members. It could also later be used to create a CoglBitmap that owns a GdkPixbuf ref so that we don't necessarily have to copy the GdkPixbuf data when converting to a bitmap. There is also _cogl_bitmap_new_shared. This creates a bitmap using a reference to another CoglBitmap for the data. This is a bit of a hack but it is needed by the atlas texture backend which wants to divert the set_region virtual to another texture but it needs to override the format of the bitmap to ignore the premult flag.
2010-07-07 18:44:16 +01:00
bitmap = _cogl_bitmap_new_from_data ((guint8 *) data,
format,
width,
image_stride / rowstride * depth,
rowstride,
NULL, /* destroy_fn */
NULL /* destroy_fn_data */);
ret = _cogl_texture_3d_new_from_bitmap (bitmap,
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
height,
depth,
flags,
internal_format,
error);
cogl-bitmap: Encapsulate the CoglBitmap even internally The CoglBitmap struct is now only defined within cogl-bitmap.c so that all of its members can now only be accessed with accessor functions. To get to the data pointer for the bitmap image you must first call _cogl_bitmap_map and later call _cogl_bitmap_unmap. The map function takes the same arguments as cogl_pixel_array_map so that eventually we can make a bitmap optionally internally divert to a pixel array. There is a _cogl_bitmap_new_from_data function which constructs a new bitmap object and takes ownership of the data pointer. The function gets passed a destroy callback which gets called when the bitmap is freed. This is similar to how gdk_pixbuf_new_from_data works. Alternatively NULL can be passed for the destroy function which means that the caller will manage the life of the pointer (but must guarantee that it stays alive at least until the bitmap is freed). This mechanism is used instead of the old approach of creating a CoglBitmap struct on the stack and manually filling in the members. It could also later be used to create a CoglBitmap that owns a GdkPixbuf ref so that we don't necessarily have to copy the GdkPixbuf data when converting to a bitmap. There is also _cogl_bitmap_new_shared. This creates a bitmap using a reference to another CoglBitmap for the data. This is a bit of a hack but it is needed by the atlas texture backend which wants to divert the set_region virtual to another texture but it needs to override the format of the bitmap to ignore the premult flag.
2010-07-07 18:44:16 +01:00
cogl_object_unref (bitmap);
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
return ret;
}
GQuark
cogl_texture_3d_error_quark (void)
{
return g_quark_from_static_string ("cogl-texture-3d-error-quark");
}
static int
_cogl_texture_3d_get_max_waste (CoglTexture *tex)
{
return -1;
}
static gboolean
_cogl_texture_3d_is_sliced (CoglTexture *tex)
{
return FALSE;
}
static gboolean
_cogl_texture_3d_can_hardware_repeat (CoglTexture *tex)
{
return TRUE;
}
static void
_cogl_texture_3d_transform_coords_to_gl (CoglTexture *tex,
float *s,
float *t)
{
/* The texture coordinates map directly so we don't need to do
anything */
}
static CoglTransformResult
_cogl_texture_3d_transform_quad_coords_to_gl (CoglTexture *tex,
float *coords)
{
/* The texture coordinates map directly so we don't need to do
anything other than check for repeats */
gboolean need_repeat = FALSE;
int i;
for (i = 0; i < 4; i++)
if (coords[i] < 0.0f || coords[i] > 1.0f)
need_repeat = TRUE;
return (need_repeat ? COGL_TRANSFORM_HARDWARE_REPEAT
: COGL_TRANSFORM_NO_REPEAT);
}
static gboolean
_cogl_texture_3d_get_gl_texture (CoglTexture *tex,
GLuint *out_gl_handle,
GLenum *out_gl_target)
{
CoglTexture3D *tex_3d = COGL_TEXTURE_3D (tex);
if (out_gl_handle)
*out_gl_handle = tex_3d->gl_texture;
if (out_gl_target)
*out_gl_target = GL_TEXTURE_3D;
return TRUE;
}
static void
_cogl_texture_3d_set_filters (CoglTexture *tex,
GLenum min_filter,
GLenum mag_filter)
{
CoglTexture3D *tex_3d = COGL_TEXTURE_3D (tex);
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
if (min_filter == tex_3d->min_filter
&& mag_filter == tex_3d->mag_filter)
return;
/* Store new values */
tex_3d->min_filter = min_filter;
tex_3d->mag_filter = mag_filter;
/* Apply new filters to the texture */
_cogl_bind_gl_texture_transient (GL_TEXTURE_3D,
tex_3d->gl_texture,
FALSE);
GE( ctx, glTexParameteri (GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, mag_filter) );
GE( ctx, glTexParameteri (GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, min_filter) );
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
}
static void
_cogl_texture_3d_pre_paint (CoglTexture *tex, CoglTexturePrePaintFlags flags)
{
CoglTexture3D *tex_3d = COGL_TEXTURE_3D (tex);
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
/* Only update if the mipmaps are dirty */
if ((flags & COGL_TEXTURE_NEEDS_MIPMAP) &&
tex_3d->auto_mipmap && tex_3d->mipmaps_dirty)
{
_cogl_bind_gl_texture_transient (GL_TEXTURE_3D,
tex_3d->gl_texture,
FALSE);
/* glGenerateMipmap is defined in the FBO extension. If it's not
available we'll fallback to temporarily enabling
GL_GENERATE_MIPMAP and reuploading the first pixel */
if (cogl_has_feature (ctx, COGL_FEATURE_ID_OFFSCREEN))
ctx->texture_driver->gl_generate_mipmaps (GL_TEXTURE_3D);
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 20:44:56 +01:00
#if defined (HAVE_COGL_GL) || defined (HAVE_COGL_GLES)
else if (ctx->driver != COGL_DRIVER_GLES2)
{
GE( ctx, glTexParameteri (GL_TEXTURE_3D,
GL_GENERATE_MIPMAP,
GL_TRUE) );
GE( ctx, glTexSubImage3D (GL_TEXTURE_3D,
0, /* level */
0, /* xoffset */
0, /* yoffset */
0, /* zoffset */
1, /* width */
1, /* height */
1, /* depth */
tex_3d->first_pixel.gl_format,
tex_3d->first_pixel.gl_type,
tex_3d->first_pixel.data) );
GE( ctx, glTexParameteri (GL_TEXTURE_3D,
GL_GENERATE_MIPMAP,
GL_FALSE) );
}
#endif
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
tex_3d->mipmaps_dirty = FALSE;
}
}
static void
_cogl_texture_3d_ensure_non_quad_rendering (CoglTexture *tex)
{
/* Nothing needs to be done */
}
static gboolean
_cogl_texture_3d_set_region (CoglTexture *tex,
int src_x,
int src_y,
int dst_x,
int dst_y,
unsigned int dst_width,
unsigned int dst_height,
CoglBitmap *bmp)
{
/* This function doesn't really make sense for 3D textures because
it can't specify which image to upload to */
return FALSE;
}
static int
_cogl_texture_3d_get_data (CoglTexture *tex,
CoglPixelFormat format,
unsigned int rowstride,
guint8 *data)
{
/* FIXME: we could probably implement this by assuming the data is
big enough to hold all of the images and that there is no stride
between the images. However it would be better to have an API
that can provide an image stride and this function probably isn't
particularly useful anyway so for now it just reports failure */
return 0;
}
static CoglPixelFormat
_cogl_texture_3d_get_format (CoglTexture *tex)
{
return COGL_TEXTURE_3D (tex)->format;
}
static GLenum
_cogl_texture_3d_get_gl_format (CoglTexture *tex)
{
return COGL_TEXTURE_3D (tex)->gl_format;
}
static int
_cogl_texture_3d_get_width (CoglTexture *tex)
{
return COGL_TEXTURE_3D (tex)->width;
}
static int
_cogl_texture_3d_get_height (CoglTexture *tex)
{
return COGL_TEXTURE_3D (tex)->height;
}
static const CoglTextureVtable
cogl_texture_3d_vtable =
{
_cogl_texture_3d_set_region,
_cogl_texture_3d_get_data,
NULL, /* foreach_sub_texture_in_region */
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
_cogl_texture_3d_get_max_waste,
_cogl_texture_3d_is_sliced,
_cogl_texture_3d_can_hardware_repeat,
_cogl_texture_3d_transform_coords_to_gl,
_cogl_texture_3d_transform_quad_coords_to_gl,
_cogl_texture_3d_get_gl_texture,
_cogl_texture_3d_set_filters,
_cogl_texture_3d_pre_paint,
_cogl_texture_3d_ensure_non_quad_rendering,
_cogl_texture_3d_set_wrap_mode_parameters,
_cogl_texture_3d_get_format,
_cogl_texture_3d_get_gl_format,
_cogl_texture_3d_get_width,
_cogl_texture_3d_get_height,
NULL /* is_foreign */
};