mutter/src/backends/native/meta-virtual-monitor-native.c

112 lines
3.6 KiB
C
Raw Normal View History

Introduce virtual monitors Virtual monitors are monitors that isn't backed by any monitor like hardware. It would typically be backed by e.g. a remote desktop service, or a network display. It is currently only supported by the native backend, and whether the X11 backend will ever see virtual monitors is an open question. This rest of this commit message describes how it works under the native backend. Each virutal monitor consists of virtualized mode setting components: * A virtual CRTC mode (MetaCrtcModeVirtual) * A virtual CRTC (MetaCrtcVirtual) * A virtual connector (MetaOutputVirtual) In difference to the corresponding mode setting objects that represents KMS objects, the virtual ones isn't directly tied to a MetaGpu, other than the CoglFramebuffer being part of the GPU context of the primary GPU, which is the case for all monitors no matter what GPU they are connected to. Part of the reason for this is that a MetaGpu in practice represents a mode setting device, and its CRTCs and outputs, are all backed by real mode setting objects, while a virtual monitor is only backed by a framebuffer that is tied to the primary GPU. Maybe this will be reevaluated in the future, but since a virtual monitor is not tied to any GPU currently, so is the case for the virtual mode setting objects. The native rendering backend, including the cursor renderer, is adapted to handle the situation where a CRTC does not have a GPU associated with it; this in practice means that it e.g. will not try to upload HW cursor buffers when the cursor is only on a virtual monitor. The same applies to the native renderer, which is made to avoid creating MetaOnscreenNative for views that are backed by virtual CRTCs, as well as to avoid trying to mode set on such views. Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
2021-01-26 15:49:28 +00:00
/*
* Copyright (C) 2021 Red Hat Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
* 02111-1307, USA.
*
*/
#include "config.h"
#include "backends/native/meta-virtual-monitor-native.h"
#include "backends/native/meta-crtc-mode-virtual.h"
#include "backends/native/meta-crtc-virtual.h"
#include "backends/native/meta-output-virtual.h"
struct _MetaVirtualMonitorNative
{
MetaVirtualMonitor parent;
uint64_t id;
};
static uint64_t mode_id = 1;
Introduce virtual monitors Virtual monitors are monitors that isn't backed by any monitor like hardware. It would typically be backed by e.g. a remote desktop service, or a network display. It is currently only supported by the native backend, and whether the X11 backend will ever see virtual monitors is an open question. This rest of this commit message describes how it works under the native backend. Each virutal monitor consists of virtualized mode setting components: * A virtual CRTC mode (MetaCrtcModeVirtual) * A virtual CRTC (MetaCrtcVirtual) * A virtual connector (MetaOutputVirtual) In difference to the corresponding mode setting objects that represents KMS objects, the virtual ones isn't directly tied to a MetaGpu, other than the CoglFramebuffer being part of the GPU context of the primary GPU, which is the case for all monitors no matter what GPU they are connected to. Part of the reason for this is that a MetaGpu in practice represents a mode setting device, and its CRTCs and outputs, are all backed by real mode setting objects, while a virtual monitor is only backed by a framebuffer that is tied to the primary GPU. Maybe this will be reevaluated in the future, but since a virtual monitor is not tied to any GPU currently, so is the case for the virtual mode setting objects. The native rendering backend, including the cursor renderer, is adapted to handle the situation where a CRTC does not have a GPU associated with it; this in practice means that it e.g. will not try to upload HW cursor buffers when the cursor is only on a virtual monitor. The same applies to the native renderer, which is made to avoid creating MetaOnscreenNative for views that are backed by virtual CRTCs, as well as to avoid trying to mode set on such views. Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
2021-01-26 15:49:28 +00:00
G_DEFINE_TYPE (MetaVirtualMonitorNative, meta_virtual_monitor_native,
META_TYPE_VIRTUAL_MONITOR)
static void
meta_virtual_monitor_native_set_mode (MetaVirtualMonitor *virtual_monitor,
int width,
int height,
float refresh_rate)
{
MetaOutput *output = meta_virtual_monitor_get_output (virtual_monitor);
MetaVirtualModeInfo info;
MetaCrtcModeVirtual *crtc_mode_virtual;
MetaCrtcMode **modes;
info = (MetaVirtualModeInfo) {
.width = width,
.height = height,
.refresh_rate = refresh_rate,
};
crtc_mode_virtual = meta_crtc_mode_virtual_new (mode_id++, &info);
modes = g_new0 (MetaCrtcMode *, 1);
modes[0] = META_CRTC_MODE (crtc_mode_virtual);
meta_output_update_modes (output, modes[0], modes, 1);
g_object_set (virtual_monitor,
"crtc-mode", crtc_mode_virtual,
NULL);
}
Introduce virtual monitors Virtual monitors are monitors that isn't backed by any monitor like hardware. It would typically be backed by e.g. a remote desktop service, or a network display. It is currently only supported by the native backend, and whether the X11 backend will ever see virtual monitors is an open question. This rest of this commit message describes how it works under the native backend. Each virutal monitor consists of virtualized mode setting components: * A virtual CRTC mode (MetaCrtcModeVirtual) * A virtual CRTC (MetaCrtcVirtual) * A virtual connector (MetaOutputVirtual) In difference to the corresponding mode setting objects that represents KMS objects, the virtual ones isn't directly tied to a MetaGpu, other than the CoglFramebuffer being part of the GPU context of the primary GPU, which is the case for all monitors no matter what GPU they are connected to. Part of the reason for this is that a MetaGpu in practice represents a mode setting device, and its CRTCs and outputs, are all backed by real mode setting objects, while a virtual monitor is only backed by a framebuffer that is tied to the primary GPU. Maybe this will be reevaluated in the future, but since a virtual monitor is not tied to any GPU currently, so is the case for the virtual mode setting objects. The native rendering backend, including the cursor renderer, is adapted to handle the situation where a CRTC does not have a GPU associated with it; this in practice means that it e.g. will not try to upload HW cursor buffers when the cursor is only on a virtual monitor. The same applies to the native renderer, which is made to avoid creating MetaOnscreenNative for views that are backed by virtual CRTCs, as well as to avoid trying to mode set on such views. Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
2021-01-26 15:49:28 +00:00
uint64_t
meta_virtual_monitor_native_get_id (MetaVirtualMonitorNative *virtual_monitor_native)
{
return virtual_monitor_native->id;
}
MetaVirtualMonitorNative *
backend: Set up and use ownership chains This means objects have an owner, where the chain eventually always leads to a MetaContext. This also means that all objects can find their way to other object instances via the chain, instead of scattered global singletons. This is a squashed commit originally containing the following: cursor-tracker: Don't get backend from singleton idle-manager: Don't get backend from singleton input-device: Pass pointer to backend during construction The backend is needed during construction to get the wacom database. input-mapper: Pass backend when constructing monitor: Don't get backend from singleton monitor-manager: Get backend directly from monitor manager remote: Get backend from manager class For the remote desktop and screen cast implementations, replace getting the backend from singletons with getting it via the manager classes. launcher: Pass backend during construction device-pool: Pass backend during construction Instead of passing the (maybe null) launcher, pass the backend, and get the launcher from there. That way we always have a way to some known context from the device pool. drm-buffer/gbm: Get backend via device pool cursor-renderer: Get backend directly from renderer input-device: Get backend getter input-settings: Add backend construct property and getter input-settings/x11: Don't get backend from singleton renderer: Get backend from renderer itself seat-impl: Add backend getter seat/native: Get backend from instance struct stage-impl: Get backend from stage impl itself x11/xkb-a11y: Don't get backend from singleton backend/x11/nested: Don't get Wayland compositor from singleton crtc: Add backend property Adding a link to the GPU isn't enough; the virtual CRTCs of virtual monitors doesn't have one. cursor-tracker: Don't get display from singleton remote: Don't get display from singleton seat: Don't get display from singleton backend/x11: Don't get display from singleton Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2718>
2022-05-27 17:35:01 +00:00
meta_virtual_monitor_native_new (MetaBackend *backend,
uint64_t id,
Introduce virtual monitors Virtual monitors are monitors that isn't backed by any monitor like hardware. It would typically be backed by e.g. a remote desktop service, or a network display. It is currently only supported by the native backend, and whether the X11 backend will ever see virtual monitors is an open question. This rest of this commit message describes how it works under the native backend. Each virutal monitor consists of virtualized mode setting components: * A virtual CRTC mode (MetaCrtcModeVirtual) * A virtual CRTC (MetaCrtcVirtual) * A virtual connector (MetaOutputVirtual) In difference to the corresponding mode setting objects that represents KMS objects, the virtual ones isn't directly tied to a MetaGpu, other than the CoglFramebuffer being part of the GPU context of the primary GPU, which is the case for all monitors no matter what GPU they are connected to. Part of the reason for this is that a MetaGpu in practice represents a mode setting device, and its CRTCs and outputs, are all backed by real mode setting objects, while a virtual monitor is only backed by a framebuffer that is tied to the primary GPU. Maybe this will be reevaluated in the future, but since a virtual monitor is not tied to any GPU currently, so is the case for the virtual mode setting objects. The native rendering backend, including the cursor renderer, is adapted to handle the situation where a CRTC does not have a GPU associated with it; this in practice means that it e.g. will not try to upload HW cursor buffers when the cursor is only on a virtual monitor. The same applies to the native renderer, which is made to avoid creating MetaOnscreenNative for views that are backed by virtual CRTCs, as well as to avoid trying to mode set on such views. Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
2021-01-26 15:49:28 +00:00
const MetaVirtualMonitorInfo *info)
{
MetaVirtualMonitorNative *virtual_monitor_native;
MetaCrtcVirtual *crtc_virtual;
MetaCrtcModeVirtual *crtc_mode_virtual;
MetaOutputVirtual *output_virtual;
backend: Set up and use ownership chains This means objects have an owner, where the chain eventually always leads to a MetaContext. This also means that all objects can find their way to other object instances via the chain, instead of scattered global singletons. This is a squashed commit originally containing the following: cursor-tracker: Don't get backend from singleton idle-manager: Don't get backend from singleton input-device: Pass pointer to backend during construction The backend is needed during construction to get the wacom database. input-mapper: Pass backend when constructing monitor: Don't get backend from singleton monitor-manager: Get backend directly from monitor manager remote: Get backend from manager class For the remote desktop and screen cast implementations, replace getting the backend from singletons with getting it via the manager classes. launcher: Pass backend during construction device-pool: Pass backend during construction Instead of passing the (maybe null) launcher, pass the backend, and get the launcher from there. That way we always have a way to some known context from the device pool. drm-buffer/gbm: Get backend via device pool cursor-renderer: Get backend directly from renderer input-device: Get backend getter input-settings: Add backend construct property and getter input-settings/x11: Don't get backend from singleton renderer: Get backend from renderer itself seat-impl: Add backend getter seat/native: Get backend from instance struct stage-impl: Get backend from stage impl itself x11/xkb-a11y: Don't get backend from singleton backend/x11/nested: Don't get Wayland compositor from singleton crtc: Add backend property Adding a link to the GPU isn't enough; the virtual CRTCs of virtual monitors doesn't have one. cursor-tracker: Don't get display from singleton remote: Don't get display from singleton seat: Don't get display from singleton backend/x11: Don't get display from singleton Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2718>
2022-05-27 17:35:01 +00:00
crtc_virtual = meta_crtc_virtual_new (backend, id);
crtc_mode_virtual = meta_crtc_mode_virtual_new (mode_id++, &info->mode_info);
Introduce virtual monitors Virtual monitors are monitors that isn't backed by any monitor like hardware. It would typically be backed by e.g. a remote desktop service, or a network display. It is currently only supported by the native backend, and whether the X11 backend will ever see virtual monitors is an open question. This rest of this commit message describes how it works under the native backend. Each virutal monitor consists of virtualized mode setting components: * A virtual CRTC mode (MetaCrtcModeVirtual) * A virtual CRTC (MetaCrtcVirtual) * A virtual connector (MetaOutputVirtual) In difference to the corresponding mode setting objects that represents KMS objects, the virtual ones isn't directly tied to a MetaGpu, other than the CoglFramebuffer being part of the GPU context of the primary GPU, which is the case for all monitors no matter what GPU they are connected to. Part of the reason for this is that a MetaGpu in practice represents a mode setting device, and its CRTCs and outputs, are all backed by real mode setting objects, while a virtual monitor is only backed by a framebuffer that is tied to the primary GPU. Maybe this will be reevaluated in the future, but since a virtual monitor is not tied to any GPU currently, so is the case for the virtual mode setting objects. The native rendering backend, including the cursor renderer, is adapted to handle the situation where a CRTC does not have a GPU associated with it; this in practice means that it e.g. will not try to upload HW cursor buffers when the cursor is only on a virtual monitor. The same applies to the native renderer, which is made to avoid creating MetaOnscreenNative for views that are backed by virtual CRTCs, as well as to avoid trying to mode set on such views. Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
2021-01-26 15:49:28 +00:00
output_virtual = meta_output_virtual_new (id, info,
crtc_virtual,
crtc_mode_virtual);
virtual_monitor_native = g_object_new (META_TYPE_VIRTUAL_MONITOR_NATIVE,
"crtc", crtc_virtual,
"crtc-mode", crtc_mode_virtual,
"output", output_virtual,
NULL);
virtual_monitor_native->id = id;
return virtual_monitor_native;
}
static void
meta_virtual_monitor_native_init (MetaVirtualMonitorNative *virtual_monitor_native)
{
}
static void
meta_virtual_monitor_native_class_init (MetaVirtualMonitorNativeClass *klass)
{
MetaVirtualMonitorClass *virtual_monitor_class = META_VIRTUAL_MONITOR_CLASS (klass);
virtual_monitor_class->set_mode = meta_virtual_monitor_native_set_mode;
Introduce virtual monitors Virtual monitors are monitors that isn't backed by any monitor like hardware. It would typically be backed by e.g. a remote desktop service, or a network display. It is currently only supported by the native backend, and whether the X11 backend will ever see virtual monitors is an open question. This rest of this commit message describes how it works under the native backend. Each virutal monitor consists of virtualized mode setting components: * A virtual CRTC mode (MetaCrtcModeVirtual) * A virtual CRTC (MetaCrtcVirtual) * A virtual connector (MetaOutputVirtual) In difference to the corresponding mode setting objects that represents KMS objects, the virtual ones isn't directly tied to a MetaGpu, other than the CoglFramebuffer being part of the GPU context of the primary GPU, which is the case for all monitors no matter what GPU they are connected to. Part of the reason for this is that a MetaGpu in practice represents a mode setting device, and its CRTCs and outputs, are all backed by real mode setting objects, while a virtual monitor is only backed by a framebuffer that is tied to the primary GPU. Maybe this will be reevaluated in the future, but since a virtual monitor is not tied to any GPU currently, so is the case for the virtual mode setting objects. The native rendering backend, including the cursor renderer, is adapted to handle the situation where a CRTC does not have a GPU associated with it; this in practice means that it e.g. will not try to upload HW cursor buffers when the cursor is only on a virtual monitor. The same applies to the native renderer, which is made to avoid creating MetaOnscreenNative for views that are backed by virtual CRTCs, as well as to avoid trying to mode set on such views. Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
2021-01-26 15:49:28 +00:00
}