mutter/gles/cogl-primitives.c

359 lines
8.9 KiB
C
Raw Normal View History

/*
* Clutter COGL
*
* A basic GL/GLES Abstraction/Utility Layer
*
* Authored By Matthew Allum <mallum@openedhand.com>
*
* Copyright (C) 2007 OpenedHand
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "cogl.h"
#include "cogl-internal.h"
#include "cogl-context.h"
#include <string.h>
#include <gmodule.h>
#define _COGL_MAX_BEZ_RECURSE_DEPTH 16
void
cogl_rectangle (gint x,
gint y,
guint width,
guint height)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
/* 32-bit integers are not supported as coord types
in GLES . Fixed type has got 16 bits left of the
point which is equal to short anyway. */
GLshort rect_verts[8] = {
(GLshort) x, (GLshort) y,
(GLshort) (x + width), (GLshort) y,
(GLshort) x, (GLshort) (y + height),
(GLshort) (x + width), (GLshort) (y + height)
};
cogl_enable (COGL_ENABLE_VERTEX_ARRAY
| (ctx->color_alpha < 255 ? COGL_ENABLE_BLEND : 0));
GE ( glVertexPointer (2, GL_SHORT, 0, rect_verts ) );
GE ( glDrawArrays (GL_TRIANGLE_STRIP, 0, 4) );
}
void
cogl_rectanglex (ClutterFixed x,
ClutterFixed y,
ClutterFixed width,
ClutterFixed height)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
GLfixed rect_verts[8] = {
x, y,
x + width, y,
x, y + height,
x + width, y + height
};
cogl_enable (COGL_ENABLE_VERTEX_ARRAY
| (ctx->color_alpha < 255
? COGL_ENABLE_BLEND : 0));
GE( glVertexPointer (2, GL_FIXED, 0, rect_verts) );
GE( glDrawArrays (GL_TRIANGLE_STRIP, 0, 4) );
}
#if 0
void
cogl_trapezoid (gint y1,
gint x11,
gint x21,
gint y2,
gint x12,
gint x22)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
cogl_enable (ctx->color_alpha < 255
? COGL_ENABLE_BLEND : 0);
GE( glBegin (GL_QUADS) );
GE( glVertex2i (x11, y1) );
GE( glVertex2i (x21, y1) );
GE( glVertex2i (x22, y2) );
GE( glVertex2i (x12, y2) );
GE( glEnd () );
}
void
cogl_trapezoidx (ClutterFixed y1,
ClutterFixed x11,
ClutterFixed x21,
ClutterFixed y2,
ClutterFixed x12,
ClutterFixed x22)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
cogl_enable (ctx->color_alpha < 255
? COGL_ENABLE_BLEND : 0);
GE( glBegin (GL_QUADS) );
GE( glVertex2f (CLUTTER_FIXED_TO_FLOAT (x11),
CLUTTER_FIXED_TO_FLOAT (y1)) );
GE( glVertex2f (CLUTTER_FIXED_TO_FLOAT (x21),
CLUTTER_FIXED_TO_FLOAT (y1)) );
GE( glVertex2f (CLUTTER_FIXED_TO_FLOAT (x22),
CLUTTER_FIXED_TO_FLOAT (y2)) );
GE( glVertex2f (CLUTTER_FIXED_TO_FLOAT (x12),
CLUTTER_FIXED_TO_FLOAT (y2)) );
GE( glEnd () );
}
#endif
void
_cogl_path_clear_nodes ()
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
if (ctx->path_nodes)
g_free(ctx->path_nodes);
ctx->path_nodes = (CoglFixedVec2*) g_malloc (2 * sizeof(CoglFixedVec2));
ctx->path_nodes_size = 0;
ctx->path_nodes_cap = 2;
}
void
_cogl_path_add_node (ClutterFixed x,
ClutterFixed y)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
CoglFixedVec2 *new_nodes = NULL;
if (ctx->path_nodes_size == ctx->path_nodes_cap)
{
new_nodes = g_realloc (ctx->path_nodes,
2 * ctx->path_nodes_cap
* sizeof (CoglFixedVec2));
if (new_nodes == NULL) return;
ctx->path_nodes = new_nodes;
ctx->path_nodes_cap *= 2;
}
ctx->path_nodes [ctx->path_nodes_size].x = x;
ctx->path_nodes [ctx->path_nodes_size].y = y;
ctx->path_nodes_size++;
if (ctx->path_nodes_size == 1)
{
ctx->path_nodes_min.x = ctx->path_nodes_max.x = x;
ctx->path_nodes_min.y = ctx->path_nodes_max.y = y;
}
else
{
if (x < ctx->path_nodes_min.x) ctx->path_nodes_min.x = x;
if (x > ctx->path_nodes_max.x) ctx->path_nodes_max.x = x;
if (y < ctx->path_nodes_min.y) ctx->path_nodes_min.y = y;
if (y > ctx->path_nodes_max.y) ctx->path_nodes_max.y = y;
}
}
static void
_cogl_path_stroke_nodes ()
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
cogl_enable (COGL_ENABLE_VERTEX_ARRAY
| (ctx->color_alpha < 255
? COGL_ENABLE_BLEND : 0));
GE( glVertexPointer (2, GL_FIXED, 0, ctx->path_nodes) );
GE( glDrawArrays (GL_LINE_STRIP, 0, ctx->path_nodes_size) );
}
static gint compare_ints (gconstpointer a,
gconstpointer b)
{
return GPOINTER_TO_INT(a)-GPOINTER_TO_INT(b);
}
static void
_cogl_path_fill_nodes ()
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
guint bounds_x;
guint bounds_y;
guint bounds_w;
guint bounds_h;
bounds_x = CLUTTER_FIXED_FLOOR (ctx->path_nodes_min.x);
bounds_y = CLUTTER_FIXED_FLOOR (ctx->path_nodes_min.y);
bounds_w = CLUTTER_FIXED_CEIL (ctx->path_nodes_max.x - ctx->path_nodes_min.x);
bounds_h = CLUTTER_FIXED_CEIL (ctx->path_nodes_max.y - ctx->path_nodes_min.y);
#if GOT_WORKING_STENCIL_BUFFER
GE( glClear (GL_STENCIL_BUFFER_BIT) );
GE( glEnable (GL_STENCIL_TEST) );
GE( glStencilFunc (GL_ALWAYS, 0x0, 0x0) );
GE( glStencilOp (GL_INVERT, GL_INVERT, GL_INVERT) );
GE( glColorMask (GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE) );
cogl_enable (COGL_ENABLE_VERTEX_ARRAY
| (ctx->color_alpha < 255 ? COGL_ENABLE_BLEND : 0));
GE( glVertexPointer (2, GL_FIXED, 0, ctx->path_nodes) );
GE( glDrawArrays (GL_TRIANGLE_FAN, 0, ctx->path_nodes_size) );
GE( glStencilFunc (GL_EQUAL, 0x1, 0x1) );
GE( glStencilOp (GL_ZERO, GL_ZERO, GL_ZERO) );
GE( glColorMask (GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE) );
cogl_rectangle (bounds_x, bounds_y, bounds_w, bounds_h);
GE( glDisable (GL_STENCIL_TEST) );
#endif
{
GSList *scanlines[bounds_h];
/* This is our edge list it stores intersections between our curve and
* scanlines */
gint i;
gint prev_x;
gint prev_y;
gint first_x;
gint first_y;
/* clear scanline intersection lists */
for (i=0; i < bounds_h; i++)
scanlines[i]=NULL;
first_x = prev_x = CLUTTER_FIXED_TO_INT (ctx->path_nodes[0].x);
first_y = prev_y = CLUTTER_FIXED_TO_INT (ctx->path_nodes[0].y);
/* saturate scanline intersection list */
for (i=1; i<ctx->path_nodes_size; i++)
{
gint dest_x = CLUTTER_FIXED_TO_INT (ctx->path_nodes[i].x);
gint dest_y = CLUTTER_FIXED_TO_INT (ctx->path_nodes[i].y);
gint ydir;
gint dx;
gint dy;
gint y;
fill_close:
dx = dest_x - prev_x;
dy = dest_y - prev_y;
if (dy < 0)
ydir = -1;
else
ydir = 1;
/* do linear interpolation between vertexes */
for (y=prev_y; y!= dest_y; y += ydir)
{
if (y-bounds_y >= 0 &&
y-bounds_y < bounds_h)
{
gint x = prev_x + (dx * (y-prev_y)) / dy;
scanlines[ y - bounds_y ]=
g_slist_insert_sorted (scanlines[ y - bounds_y],
GINT_TO_POINTER(x),
compare_ints);
}
}
prev_x = dest_x;
prev_y = dest_y;
/* if we're on the last knot, fake the first vertex being a next one */
if (ctx->path_nodes_size == i+1)
{
dest_x = first_x;
dest_y = first_y;
i++; /* to make the loop finally end */
goto fill_close;
}
}
/* for each scanline */
for (i=0; i < bounds_h; i++)
{
GSList *iter = scanlines[i];
while (iter)
{
GSList *next = iter->next;
gint startx, endx;
if (!next)
break;
startx = GPOINTER_TO_INT (iter->data);
endx = GPOINTER_TO_INT (next->data);
/* draw the segments that should be visible */
cogl_rectangle (startx, i + bounds_y, endx - startx, 1);
iter = next->next;
}
if (scanlines[i])
g_slist_free (scanlines[i]);
}
}
}
void
cogl_fill ()
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
if (ctx->path_nodes_size == 0)
return;
_cogl_path_fill_nodes();
}
void
cogl_stroke ()
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
if (ctx->path_nodes_size == 0)
return;
_cogl_path_stroke_nodes();
}