mutter/src/compositor/meta-shadow-factory.c

1067 lines
35 KiB
C
Raw Normal View History

/* -*- mode: C; c-file-style: "gnu"; indent-tabs-mode: nil; -*- */
/*
* Copyright 2010 Red Hat, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/**
* SECTION:meta-shadow-factory
* @title: MetaShadowFactory
* @short_description: Create and cache shadow textures for arbitrary window shapes
*/
#include "config.h"
#include <math.h>
#include <string.h>
#include "compositor/cogl-utils.h"
#include "compositor/region-utils.h"
#include "meta/meta-shadow-factory.h"
#include "meta/util.h"
/* This file implements blurring the shape of a window to produce a
* shadow texture. The details are discussed below; a quick summary
* of the optimizations we use:
*
* - If the window shape is along the lines of a rounded rectangle -
* a rectangular center portion with stuff at the corners - then
* the blur of this - the shadow - can also be represented as a
* 9-sliced texture and the same texture can be used for different
* size.
*
* - We use the fact that a Gaussian blur is separable to do a
* 2D blur as 1D blur of the rows followed by a 1D blur of the
* columns.
*
* - For better cache efficiency, we blur rows, transpose the image
* in blocks, blur rows again, and then transpose back.
*
* - We approximate the 1D gaussian blur as 3 successive box filters.
*/
typedef struct _MetaShadowCacheKey MetaShadowCacheKey;
typedef struct _MetaShadowClassInfo MetaShadowClassInfo;
struct _MetaShadowCacheKey
{
MetaWindowShape *shape;
int radius;
int top_fade;
};
struct _MetaShadow
{
int ref_count;
MetaShadowFactory *factory;
MetaShadowCacheKey key;
CoglTexture *texture;
CoglPipeline *pipeline;
/* The outer order is the distance the shadow extends outside the window
* shape; the inner border is the unscaled portion inside the window
* shape */
int outer_border_top;
int inner_border_top;
int outer_border_right;
int inner_border_right;
int outer_border_bottom;
int inner_border_bottom;
int outer_border_left;
int inner_border_left;
guint scale_width : 1;
guint scale_height : 1;
};
struct _MetaShadowClassInfo
{
const char *name; /* const so we can reuse for static definitions */
MetaShadowParams focused;
MetaShadowParams unfocused;
};
struct _MetaShadowFactory
{
GObject parent_instance;
/* MetaShadowCacheKey => MetaShadow; the shadows are not referenced
* by the factory, they are simply removed from the table when freed */
GHashTable *shadows;
/* class name => MetaShadowClassInfo */
GHashTable *shadow_classes;
};
enum
{
CHANGED,
LAST_SIGNAL
};
static guint signals[LAST_SIGNAL] = { 0 };
/* The first element in this array also defines the default parameters
* for newly created classes */
MetaShadowClassInfo default_shadow_classes[] = {
{ "normal", { 10, -1, 0, 3, 128 }, { 8, -1, 0, 2, 64 } },
{ "dialog", { 10, -1, 0, 3, 128 }, { 8, -1, 0, 2, 64 } },
{ "modal_dialog", { 10, -1, 0, 3, 128 }, { 8, -1, 0, 2, 64 } },
{ "utility", { 10, -1, 0, 3, 128 }, { 8, -1, 0, 2, 64 } },
{ "border", { 10, -1, 0, 3, 128 }, { 8, -1, 0, 2, 64 } },
{ "menu", { 10, -1, 0, 3, 128 }, { 8, -1, 0, 2, 64 } },
{ "popup-menu", { 1, -1, 0, 0, 128 }, { 1, -1, 0, 0, 128 } },
{ "dropdown-menu", { 1, -1, 0, 0, 128 }, { 1, -1, 0, 0, 128 } },
{ "attached", { 10, -1, 0, 3, 128 }, { 8, -1, 0, 2, 64 } }
};
G_DEFINE_TYPE (MetaShadowFactory, meta_shadow_factory, G_TYPE_OBJECT);
static guint
meta_shadow_cache_key_hash (gconstpointer val)
{
const MetaShadowCacheKey *key = val;
return 59 * key->radius + 67 * key->top_fade + 73 * meta_window_shape_hash (key->shape);
}
static gboolean
meta_shadow_cache_key_equal (gconstpointer a,
gconstpointer b)
{
const MetaShadowCacheKey *key_a = a;
const MetaShadowCacheKey *key_b = b;
return (key_a->radius == key_b->radius && key_a->top_fade == key_b->top_fade &&
meta_window_shape_equal (key_a->shape, key_b->shape));
}
MetaShadow *
meta_shadow_ref (MetaShadow *shadow)
{
shadow->ref_count++;
return shadow;
}
void
meta_shadow_unref (MetaShadow *shadow)
{
shadow->ref_count--;
if (shadow->ref_count == 0)
{
if (shadow->factory)
{
g_hash_table_remove (shadow->factory->shadows,
&shadow->key);
}
meta_window_shape_unref (shadow->key.shape);
cogl_object_unref (shadow->texture);
cogl_object_unref (shadow->pipeline);
g_slice_free (MetaShadow, shadow);
}
}
/**
* meta_shadow_paint:
* @window_x: x position of the region to paint a shadow for
* @window_y: y position of the region to paint a shadow for
* @window_width: actual width of the region to paint a shadow for
* @window_height: actual height of the region to paint a shadow for
* @clip: (nullable): if non-%NULL specifies the visible portion
* of the shadow.
* @clip_strictly: if %TRUE, drawing will be clipped strictly
* to @clip, otherwise, it will be only used to optimize
* drawing.
*
* Paints the shadow at the given position, for the specified actual
* size of the region. (Since a #MetaShadow can be shared between
* different sizes with the same extracted #MetaWindowShape the
* size needs to be passed in here.)
*/
void
meta_shadow_paint (MetaShadow *shadow,
CoglFramebuffer *framebuffer,
int window_x,
int window_y,
int window_width,
int window_height,
guint8 opacity,
cairo_region_t *clip,
gboolean clip_strictly)
{
float texture_width = cogl_texture_get_width (shadow->texture);
float texture_height = cogl_texture_get_height (shadow->texture);
int i, j;
float src_x[4];
float src_y[4];
int dest_x[4];
int dest_y[4];
int n_x, n_y;
if (clip && cairo_region_is_empty (clip))
return;
cogl_pipeline_set_color4ub (shadow->pipeline,
opacity, opacity, opacity, opacity);
if (shadow->scale_width)
{
n_x = 3;
src_x[0] = 0.0;
src_x[1] = (shadow->inner_border_left + shadow->outer_border_left) / texture_width;
src_x[2] = (texture_width - (shadow->inner_border_right + shadow->outer_border_right)) / texture_width;
src_x[3] = 1.0;
dest_x[0] = window_x - shadow->outer_border_left;
dest_x[1] = window_x + shadow->inner_border_left;
dest_x[2] = window_x + window_width - shadow->inner_border_right;
dest_x[3] = window_x + window_width + shadow->outer_border_right;
}
else
{
n_x = 1;
src_x[0] = 0.0;
src_x[1] = 1.0;
dest_x[0] = window_x - shadow->outer_border_left;
dest_x[1] = window_x + window_width + shadow->outer_border_right;
}
if (shadow->scale_height)
{
n_y = 3;
src_y[0] = 0.0;
src_y[1] = (shadow->inner_border_top + shadow->outer_border_top) / texture_height;
src_y[2] = (texture_height - (shadow->inner_border_bottom + shadow->outer_border_bottom)) / texture_height;
src_y[3] = 1.0;
dest_y[0] = window_y - shadow->outer_border_top;
dest_y[1] = window_y + shadow->inner_border_top;
dest_y[2] = window_y + window_height - shadow->inner_border_bottom;
dest_y[3] = window_y + window_height + shadow->outer_border_bottom;
}
else
{
n_y = 1;
src_y[0] = 0.0;
src_y[1] = 1.0;
dest_y[0] = window_y - shadow->outer_border_top;
dest_y[1] = window_y + window_height + shadow->outer_border_bottom;
}
for (j = 0; j < n_y; j++)
{
cairo_rectangle_int_t dest_rect;
dest_rect.y = dest_y[j];
dest_rect.height = dest_y[j + 1] - dest_y[j];
if (dest_rect.height == 0)
continue;
for (i = 0; i < n_x; i++)
{
cairo_region_overlap_t overlap;
dest_rect.x = dest_x[i];
dest_rect.width = dest_x[i + 1] - dest_x[i];
if (dest_rect.width == 0)
continue;
if (clip)
overlap = cairo_region_contains_rectangle (clip, &dest_rect);
else
overlap = CAIRO_REGION_OVERLAP_IN;
if (overlap == CAIRO_REGION_OVERLAP_OUT)
continue;
/* There's quite a bit of overhead from allocating a new
* region in order to find an exact intersection and
* generating more geometry - we make the assumption that
* unless we have to clip strictly it will be cheaper to
* just draw the entire rectangle.
*/
if (overlap == CAIRO_REGION_OVERLAP_IN ||
(overlap == CAIRO_REGION_OVERLAP_PART && !clip_strictly))
{
cogl_framebuffer_draw_textured_rectangle (framebuffer,
shadow->pipeline,
dest_x[i], dest_y[j],
dest_x[i + 1], dest_y[j + 1],
src_x[i], src_y[j],
src_x[i + 1], src_y[j + 1]);
}
else if (overlap == CAIRO_REGION_OVERLAP_PART)
{
cairo_region_t *intersection;
int n_rectangles, k;
intersection = cairo_region_create_rectangle (&dest_rect);
cairo_region_intersect (intersection, clip);
n_rectangles = cairo_region_num_rectangles (intersection);
for (k = 0; k < n_rectangles; k++)
{
cairo_rectangle_int_t rect;
float src_x1, src_x2, src_y1, src_y2;
cairo_region_get_rectangle (intersection, k, &rect);
/* Separately linear interpolate X and Y coordinates in the source
* based on the destination X and Y coordinates */
src_x1 = (src_x[i] * (dest_rect.x + dest_rect.width - rect.x) +
src_x[i + 1] * (rect.x - dest_rect.x)) / dest_rect.width;
src_x2 = (src_x[i] * (dest_rect.x + dest_rect.width - (rect.x + rect.width)) +
src_x[i + 1] * (rect.x + rect.width - dest_rect.x)) / dest_rect.width;
src_y1 = (src_y[j] * (dest_rect.y + dest_rect.height - rect.y) +
src_y[j + 1] * (rect.y - dest_rect.y)) / dest_rect.height;
src_y2 = (src_y[j] * (dest_rect.y + dest_rect.height - (rect.y + rect.height)) +
src_y[j + 1] * (rect.y + rect.height - dest_rect.y)) / dest_rect.height;
cogl_framebuffer_draw_textured_rectangle (framebuffer,
shadow->pipeline,
rect.x, rect.y,
rect.x + rect.width, rect.y + rect.height,
src_x1, src_y1, src_x2, src_y2);
}
cairo_region_destroy (intersection);
}
}
}
}
/**
* meta_shadow_get_bounds:
* @shadow: a #MetaShadow
* @window_x: x position of the region to paint a shadow for
* @window_y: y position of the region to paint a shadow for
* @window_width: actual width of the region to paint a shadow for
* @window_height: actual height of the region to paint a shadow for
*
* Computes the bounds of the pixels that will be affected by
2011-10-18 02:10:00 +00:00
* meta_shadow_paint()
*/
void
meta_shadow_get_bounds (MetaShadow *shadow,
int window_x,
int window_y,
int window_width,
int window_height,
cairo_rectangle_int_t *bounds)
{
bounds->x = window_x - shadow->outer_border_left;
bounds->y = window_y - shadow->outer_border_top;
bounds->width = window_width + shadow->outer_border_left + shadow->outer_border_right;
bounds->height = window_height + shadow->outer_border_top + shadow->outer_border_bottom;
}
static void
meta_shadow_class_info_free (MetaShadowClassInfo *class_info)
{
g_free ((char *)class_info->name);
g_slice_free (MetaShadowClassInfo, class_info);
}
static void
meta_shadow_factory_init (MetaShadowFactory *factory)
{
guint i;
factory->shadows = g_hash_table_new (meta_shadow_cache_key_hash,
meta_shadow_cache_key_equal);
factory->shadow_classes = g_hash_table_new_full (g_str_hash,
g_str_equal,
NULL,
(GDestroyNotify)meta_shadow_class_info_free);
for (i = 0; i < G_N_ELEMENTS (default_shadow_classes); i++)
{
MetaShadowClassInfo *class_info = g_slice_new (MetaShadowClassInfo);
*class_info = default_shadow_classes[i];
class_info->name = g_strdup (class_info->name);
g_hash_table_insert (factory->shadow_classes,
(char *)class_info->name, class_info);
}
}
static void
meta_shadow_factory_finalize (GObject *object)
{
MetaShadowFactory *factory = META_SHADOW_FACTORY (object);
GHashTableIter iter;
gpointer key, value;
/* Detach from the shadows in the table so we won't try to
* remove them when they're freed. */
g_hash_table_iter_init (&iter, factory->shadows);
while (g_hash_table_iter_next (&iter, &key, &value))
{
MetaShadow *shadow = key;
shadow->factory = NULL;
}
g_hash_table_destroy (factory->shadows);
g_hash_table_destroy (factory->shadow_classes);
G_OBJECT_CLASS (meta_shadow_factory_parent_class)->finalize (object);
}
static void
meta_shadow_factory_class_init (MetaShadowFactoryClass *klass)
{
GObjectClass *object_class = G_OBJECT_CLASS (klass);
object_class->finalize = meta_shadow_factory_finalize;
signals[CHANGED] =
g_signal_new ("changed",
G_TYPE_FROM_CLASS (object_class),
G_SIGNAL_RUN_LAST,
0,
NULL, NULL, NULL,
G_TYPE_NONE, 0);
}
MetaShadowFactory *
meta_shadow_factory_new (void)
{
return g_object_new (META_TYPE_SHADOW_FACTORY, NULL);
}
/**
* meta_shadow_factory_get_default:
*
* Return value: (transfer none): the global singleton shadow factory
*/
MetaShadowFactory *
meta_shadow_factory_get_default (void)
{
static MetaShadowFactory *factory;
if (factory == NULL)
factory = meta_shadow_factory_new ();
return factory;
}
/* We emulate a 1D Gaussian blur by using 3 consecutive box blurs;
* this produces a result that's within 3% of the original and can be
* implemented much faster for large filter sizes because of the
* efficiency of implementation of a box blur. Idea and formula
* for choosing the box blur size come from:
*
* http://www.w3.org/TR/SVG/filters.html#feGaussianBlurElement
*
* The 2D blur is then done by blurring the rows, flipping the
* image and blurring the columns. (This is possible because the
* Gaussian kernel is separable - it's the product of a horizontal
* blur and a vertical blur.)
*/
static int
get_box_filter_size (int radius)
{
return (int)(0.5 + radius * (0.75 * sqrt(2*M_PI)));
}
/* The "spread" of the filter is the number of pixels from an original
* pixel that it's blurred image extends. (A no-op blur that doesn't
* blur would have a spread of 0.) See comment in blur_rows() for why the
* odd and even cases are different
*/
static int
get_shadow_spread (int radius)
{
int d;
if (radius == 0)
return 0;
d = get_box_filter_size (radius);
if (d % 2 == 1)
return 3 * (d / 2);
else
return 3 * (d / 2) - 1;
}
/* This applies a single box blur pass to a horizontal range of pixels;
* since the box blur has the same weight for all pixels, we can
* implement an efficient sliding window algorithm where we add
* in pixels coming into the window from the right and remove
* them when they leave the windw to the left.
*
* d is the filter width; for even d shift indicates how the blurred
* result is aligned with the original - does ' x ' go to ' yy' (shift=1)
* or 'yy ' (shift=-1)
*/
static void
blur_xspan (guchar *row,
guchar *tmp_buffer,
int row_width,
int x0,
int x1,
int d,
int shift)
{
int offset;
int sum = 0;
int i;
if (d % 2 == 1)
offset = d / 2;
else
offset = (d - shift) / 2;
/* All the conditionals in here look slow, but the branches will
* be well predicted and there are enough different possibilities
* that trying to write this as a series of unconditional loops
* is hard and not an obvious win. The main slow down here seems
2014-08-02 22:54:31 +00:00
* to be the integer division per pixel; one possible optimization
* would be to accumulate into two 16-bit integer buffers and
* only divide down after all three passes. (SSE parallel implementation
* of the divide step is possible.)
*/
for (i = x0 - d + offset; i < x1 + offset; i++)
{
if (i >= 0 && i < row_width)
2014-07-31 14:11:36 +00:00
sum += row[i];
if (i >= x0 + offset)
2014-07-31 14:11:36 +00:00
{
if (i >= d)
sum -= row[i - d];
2014-07-31 14:11:36 +00:00
tmp_buffer[i - offset] = (sum + d / 2) / d;
}
}
2014-07-31 14:40:42 +00:00
memcpy (row + x0, tmp_buffer + x0, x1 - x0);
}
static void
blur_rows (cairo_region_t *convolve_region,
int x_offset,
int y_offset,
2014-07-31 14:11:36 +00:00
guchar *buffer,
int buffer_width,
int buffer_height,
int d)
{
int i, j;
int n_rectangles;
guchar *tmp_buffer;
tmp_buffer = g_malloc (buffer_width);
n_rectangles = cairo_region_num_rectangles (convolve_region);
for (i = 0; i < n_rectangles; i++)
{
cairo_rectangle_int_t rect;
cairo_region_get_rectangle (convolve_region, i, &rect);
for (j = y_offset + rect.y; j < y_offset + rect.y + rect.height; j++)
2014-07-31 14:11:36 +00:00
{
guchar *row = buffer + j * buffer_width;
int x0 = x_offset + rect.x;
int x1 = x0 + rect.width;
/* We want to produce a symmetric blur that spreads a pixel
* equally far to the left and right. If d is odd that happens
* naturally, but for d even, we approximate by using a blur
* on either side and then a centered blur of size d + 1.
2014-08-02 22:54:31 +00:00
* (technique also from the SVG specification)
*/
2014-07-31 14:11:36 +00:00
if (d % 2 == 1)
{
blur_xspan (row, tmp_buffer, buffer_width, x0, x1, d, 0);
blur_xspan (row, tmp_buffer, buffer_width, x0, x1, d, 0);
blur_xspan (row, tmp_buffer, buffer_width, x0, x1, d, 0);
}
else
{
blur_xspan (row, tmp_buffer, buffer_width, x0, x1, d, 1);
blur_xspan (row, tmp_buffer, buffer_width, x0, x1, d, -1);
blur_xspan (row, tmp_buffer, buffer_width, x0, x1, d + 1, 0);
}
}
}
g_free (tmp_buffer);
}
static void
fade_bytes (guchar *bytes,
int width,
int distance,
int total)
{
guint32 multiplier = (distance * 0x10000 + 0x8000) / total;
int i;
for (i = 0; i < width; i++)
bytes[i] = (bytes[i] * multiplier) >> 16;
}
/* Swaps width and height. Either swaps in-place and returns the original
* buffer or allocates a new buffer, frees the original buffer and returns
* the new buffer.
*/
static guchar *
flip_buffer (guchar *buffer,
2014-07-31 14:11:36 +00:00
int width,
int height)
{
/* Working in blocks increases cache efficiency, compared to reading
* or writing an entire column at once */
#define BLOCK_SIZE 16
if (width == height)
{
int i0, j0;
for (j0 = 0; j0 < height; j0 += BLOCK_SIZE)
2014-07-31 14:11:36 +00:00
for (i0 = 0; i0 <= j0; i0 += BLOCK_SIZE)
{
int max_j = MIN(j0 + BLOCK_SIZE, height);
int max_i = MIN(i0 + BLOCK_SIZE, width);
int i, j;
if (i0 == j0)
{
for (j = j0; j < max_j; j++)
for (i = i0; i < j; i++)
{
guchar tmp = buffer[j * width + i];
buffer[j * width + i] = buffer[i * width + j];
buffer[i * width + j] = tmp;
}
}
else
{
for (j = j0; j < max_j; j++)
for (i = i0; i < max_i; i++)
{
guchar tmp = buffer[j * width + i];
buffer[j * width + i] = buffer[i * width + j];
buffer[i * width + j] = tmp;
}
}
}
return buffer;
}
else
{
guchar *new_buffer = g_malloc (height * width);
int i0, j0;
for (i0 = 0; i0 < width; i0 += BLOCK_SIZE)
for (j0 = 0; j0 < height; j0 += BLOCK_SIZE)
2014-07-31 14:11:36 +00:00
{
int max_j = MIN(j0 + BLOCK_SIZE, height);
int max_i = MIN(i0 + BLOCK_SIZE, width);
int i, j;
for (i = i0; i < max_i; i++)
for (j = j0; j < max_j; j++)
2014-07-31 14:11:36 +00:00
new_buffer[i * height + j] = buffer[j * width + i];
}
g_free (buffer);
return new_buffer;
}
#undef BLOCK_SIZE
}
static void
make_shadow (MetaShadow *shadow,
cairo_region_t *region)
{
ClutterBackend *backend = clutter_get_default_backend ();
CoglContext *ctx = clutter_backend_get_cogl_context (backend);
GError *error = NULL;
int d = get_box_filter_size (shadow->key.radius);
int spread = get_shadow_spread (shadow->key.radius);
cairo_rectangle_int_t extents;
cairo_region_t *row_convolve_region;
cairo_region_t *column_convolve_region;
guchar *buffer;
int buffer_width;
int buffer_height;
int x_offset;
int y_offset;
int n_rectangles, j, k;
cairo_region_get_extents (region, &extents);
/* In the case where top_fade >= 0 and the portion above the top
* edge of the shape will be cropped, it seems like we could create
* a smaller buffer and omit the top portion, but actually, in our
* multi-pass blur algorithm, the blur into the area above the window
* in the first pass will contribute back to the final pixel values
* for the top pixels, so we create a buffer as if we weren't cropping
* and only crop when creating the CoglTexture.
*/
buffer_width = extents.width + 2 * spread;
buffer_height = extents.height + 2 * spread;
/* Round up so we have aligned rows/columns */
buffer_width = (buffer_width + 3) & ~3;
buffer_height = (buffer_height + 3) & ~3;
/* Square buffer allows in-place swaps, which are roughly 70% faster, but we
* don't want to over-allocate too much memory.
*/
if (buffer_height < buffer_width && buffer_height > (3 * buffer_width) / 4)
buffer_height = buffer_width;
if (buffer_width < buffer_height && buffer_width > (3 * buffer_height) / 4)
buffer_width = buffer_height;
buffer = g_malloc0 (buffer_width * buffer_height);
/* Blurring with multiple box-blur passes is fast, but (especially for
* large shadow sizes) we can improve efficiency by restricting the blur
* to the region that actually needs to be blurred.
*/
row_convolve_region = meta_make_border_region (region, spread, spread, FALSE);
column_convolve_region = meta_make_border_region (region, 0, spread, TRUE);
/* Offsets between coordinates of the regions and coordinates in the buffer */
x_offset = spread;
y_offset = spread;
/* Step 1: unblurred image */
n_rectangles = cairo_region_num_rectangles (region);
for (k = 0; k < n_rectangles; k++)
{
cairo_rectangle_int_t rect;
cairo_region_get_rectangle (region, k, &rect);
for (j = y_offset + rect.y; j < y_offset + rect.y + rect.height; j++)
2014-07-31 14:11:36 +00:00
memset (buffer + buffer_width * j + x_offset + rect.x, 255, rect.width);
}
/* Step 2: swap rows and columns */
buffer = flip_buffer (buffer, buffer_width, buffer_height);
/* Step 3: blur rows (really columns) */
blur_rows (column_convolve_region, y_offset, x_offset,
buffer, buffer_height, buffer_width,
d);
/* Step 4: swap rows and columns */
buffer = flip_buffer (buffer, buffer_height, buffer_width);
/* Step 5: blur rows */
blur_rows (row_convolve_region, x_offset, y_offset,
buffer, buffer_width, buffer_height,
d);
/* Step 6: fade out the top, if applicable */
if (shadow->key.top_fade >= 0)
{
for (j = y_offset; j < y_offset + MIN (shadow->key.top_fade, extents.height + shadow->outer_border_bottom); j++)
fade_bytes(buffer + j * buffer_width, buffer_width, j - y_offset, shadow->key.top_fade);
}
/* We offset the passed in pixels to crop off the extra area we allocated at the top
* in the case of top_fade >= 0. We also account for padding at the left for symmetry
* though that doesn't currently occur.
*/
shadow->texture = COGL_TEXTURE (cogl_texture_2d_new_from_data (ctx,
shadow->outer_border_left + extents.width + shadow->outer_border_right,
shadow->outer_border_top + extents.height + shadow->outer_border_bottom,
COGL_PIXEL_FORMAT_A_8,
buffer_width,
(buffer +
(y_offset - shadow->outer_border_top) * buffer_width +
(x_offset - shadow->outer_border_left)),
&error));
if (error)
{
meta_warning ("Failed to allocate shadow texture: %s", error->message);
g_error_free (error);
}
cairo_region_destroy (row_convolve_region);
cairo_region_destroy (column_convolve_region);
g_free (buffer);
shadow->pipeline = meta_create_texture_pipeline (shadow->texture);
}
static MetaShadowParams *
get_shadow_params (MetaShadowFactory *factory,
const char *class_name,
gboolean focused,
gboolean create)
{
MetaShadowClassInfo *class_info = g_hash_table_lookup (factory->shadow_classes,
class_name);
if (class_info == NULL)
{
if (create)
{
class_info = g_slice_new0 (MetaShadowClassInfo);
*class_info = default_shadow_classes[0];
class_info->name = g_strdup (class_info->name);
g_hash_table_insert (factory->shadow_classes,
(char *)class_info->name, class_info);
}
else
{
class_info = &default_shadow_classes[0];
}
}
if (focused)
return &class_info->focused;
else
return &class_info->unfocused;
}
/**
* meta_shadow_factory_get_shadow:
* @factory: a #MetaShadowFactory
* @shape: the size-invariant shape of the window's region
* @width: the actual width of the window's region
* @height: the actual height of the window's region
* @class_name: name of the class of window shadows
* @focused: whether the shadow is for a focused window
*
* Gets the appropriate shadow object for drawing shadows for the
* specified window shape. The region that we are shadowing is specified
* as a combination of a size-invariant extracted shape and the size.
* In some cases, the same shadow object can be shared between sizes;
* in other cases a different shadow object is used for each size.
*
* Return value: (transfer full): a newly referenced #MetaShadow; unref with
* meta_shadow_unref()
*/
MetaShadow *
meta_shadow_factory_get_shadow (MetaShadowFactory *factory,
MetaWindowShape *shape,
int width,
int height,
const char *class_name,
gboolean focused)
{
MetaShadowParams *params;
MetaShadowCacheKey key;
MetaShadow *shadow;
cairo_region_t *region;
int spread;
int shape_border_top, shape_border_right, shape_border_bottom, shape_border_left;
int inner_border_top, inner_border_right, inner_border_bottom, inner_border_left;
int outer_border_top, outer_border_right, outer_border_bottom, outer_border_left;
gboolean scale_width, scale_height;
gboolean cacheable;
int center_width, center_height;
g_return_val_if_fail (META_IS_SHADOW_FACTORY (factory), NULL);
g_return_val_if_fail (shape != NULL, NULL);
/* Using a single shadow texture for different window sizes only works
* when there is a central scaled area that is greater than twice
* the spread of the gaussian blur we are applying to get to the
* shadow image.
* ********* ***********
* /----------\ *###########* *#############*
* | | => **#*********#** => **#***********#**
* | | **#** **#** **#** **#**
* | | **#*********#** **#***********#**
* \----------/ *###########* *#############*
* ********** ************
* Original Blur Stretched Blur
*
* For smaller sizes, we create a separate shadow image for each size;
* since we assume that there will be little reuse, we don't try to
* cache such images but just recreate them. (Since the current cache
* policy is to only keep around referenced shadows, there wouldn't
* be any harm in caching them, it would just make the book-keeping
* a bit tricker.)
*
* In the case where we are fading a the top, that also has to fit
* within the top unscaled border.
*/
params = get_shadow_params (factory, class_name, focused, FALSE);
spread = get_shadow_spread (params->radius);
meta_window_shape_get_borders (shape,
&shape_border_top,
&shape_border_right,
&shape_border_bottom,
&shape_border_left);
inner_border_top = MAX (shape_border_top + spread, params->top_fade);
outer_border_top = params->top_fade >= 0 ? 0 : spread;
inner_border_right = shape_border_right + spread;
outer_border_right = spread;
inner_border_bottom = shape_border_bottom + spread;
outer_border_bottom = spread;
inner_border_left = shape_border_left + spread;
outer_border_left = spread;
scale_width = inner_border_left + inner_border_right <= width;
scale_height = inner_border_top + inner_border_bottom <= height;
cacheable = scale_width && scale_height;
if (cacheable)
{
key.shape = shape;
key.radius = params->radius;
key.top_fade = params->top_fade;
shadow = g_hash_table_lookup (factory->shadows, &key);
if (shadow)
return meta_shadow_ref (shadow);
}
shadow = g_slice_new0 (MetaShadow);
shadow->ref_count = 1;
shadow->factory = factory;
shadow->key.shape = meta_window_shape_ref (shape);
shadow->key.radius = params->radius;
shadow->key.top_fade = params->top_fade;
shadow->outer_border_top = outer_border_top;
shadow->inner_border_top = inner_border_top;
shadow->outer_border_right = outer_border_right;
shadow->inner_border_right = inner_border_right;
shadow->outer_border_bottom = outer_border_bottom;
shadow->inner_border_bottom = inner_border_bottom;
shadow->outer_border_left = outer_border_left;
shadow->inner_border_left = inner_border_left;
shadow->scale_width = scale_width;
if (scale_width)
center_width = inner_border_left + inner_border_right - (shape_border_left + shape_border_right);
else
center_width = width - (shape_border_left + shape_border_right);
shadow->scale_height = scale_height;
if (scale_height)
center_height = inner_border_top + inner_border_bottom - (shape_border_top + shape_border_bottom);
else
center_height = height - (shape_border_top + shape_border_bottom);
g_assert (center_width >= 0 && center_height >= 0);
region = meta_window_shape_to_region (shape, center_width, center_height);
make_shadow (shadow, region);
cairo_region_destroy (region);
if (cacheable)
g_hash_table_insert (factory->shadows, &shadow->key, shadow);
return shadow;
}
/**
* meta_shadow_factory_set_params:
* @factory: a #MetaShadowFactory
* @class_name: name of the class of shadow to set the params for.
* the default shadow classes are the names of the different
* theme frame types (normal, dialog, modal_dialog, utility,
* border, menu, attached) and in addition, popup-menu
* and dropdown-menu.
* @focused: whether the shadow is for a focused window
* @params: new parameter values
*
* Updates the shadow parameters for a particular class of shadows
* for either the focused or unfocused state. If the class name
* does not name an existing class, a new class will be created
* (the other focus state for that class will have default values
* assigned to it.)
*/
void
meta_shadow_factory_set_params (MetaShadowFactory *factory,
const char *class_name,
gboolean focused,
MetaShadowParams *params)
{
MetaShadowParams *stored_params;
g_return_if_fail (META_IS_SHADOW_FACTORY (factory));
g_return_if_fail (class_name != NULL);
g_return_if_fail (params != NULL);
g_return_if_fail (params->radius >= 0);
stored_params = get_shadow_params (factory, class_name, focused, TRUE);
*stored_params = *params;
g_signal_emit (factory, signals[CHANGED], 0);
}
/**
* meta_shadow_factory_get_params:
* @factory: a #MetaShadowFactory
* @class_name: name of the class of shadow to get the params for
* @focused: whether the shadow is for a focused window
* @params: (out caller-allocates): location to store the current parameter values
*
* Gets the shadow parameters for a particular class of shadows
* for either the focused or unfocused state. If the class name
* does not name an existing class, default values will be returned
* without printing an error.
*/
void
meta_shadow_factory_get_params (MetaShadowFactory *factory,
const char *class_name,
gboolean focused,
MetaShadowParams *params)
{
MetaShadowParams *stored_params;
g_return_if_fail (META_IS_SHADOW_FACTORY (factory));
g_return_if_fail (class_name != NULL);
stored_params = get_shadow_params (factory, class_name, focused, FALSE);
if (params)
*params = *stored_params;
}
G_DEFINE_BOXED_TYPE (MetaShadow, meta_shadow,
meta_shadow_ref, meta_shadow_unref)