mutter/clutter/clutter/clutter-stage-view.c

354 lines
10 KiB
C
Raw Normal View History

Introduce regional stage rendering Add support for drawing a stage using multiple framebuffers each making up one part of the stage. This works by the stage backend (ClutterStageWindow) providing a list of views which will be for splitting up the stage in different regions. A view layout, for now, is a set of rectangles. The stage window (i.e. stage "backend" will use this information when drawing a frame, using one framebuffer for each view. The scene graph is adapted to explictly take a view when painting the stage. It will use this view, its assigned framebuffer and layout to offset and clip the drawing accordingly. This effectively removes any notion of "stage framebuffer", since each stage now may consist of multiple framebuffers. Therefore, API involving this has been deprecated and made no-ops; namely clutter_stage_ensure_context(). Callers are now assumed to either always use a framebuffer reference explicitly, or push/pop the framebuffer of a given view where the code has not yet changed to use the explicit-buffer-using cogl API. Currently only the nested X11 backend supports this mode fully, and the per view framebuffers are all offscreen. Upon frame completion, it'll blit each view's framebuffer onto the onscreen framebuffer before swapping. Other backends (X11 CM and native/KMS) are adapted to manage a full-stage view. The X11 CM backend will continue to use this method, while the native/KMS backend will be adopted to use multiple view drawing. https://bugzilla.gnome.org/show_bug.cgi?id=768976
2016-05-27 03:09:24 +00:00
/*
* Copyright (C) 2016 Red Hat Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
#include "clutter-build-config.h"
#include "clutter/clutter-stage-view.h"
#include <cairo-gobject.h>
enum
{
PROP_0,
PROP_LAYOUT,
PROP_FRAMEBUFFER,
PROP_OFFSCREEN,
PROP_SCALE,
Introduce regional stage rendering Add support for drawing a stage using multiple framebuffers each making up one part of the stage. This works by the stage backend (ClutterStageWindow) providing a list of views which will be for splitting up the stage in different regions. A view layout, for now, is a set of rectangles. The stage window (i.e. stage "backend" will use this information when drawing a frame, using one framebuffer for each view. The scene graph is adapted to explictly take a view when painting the stage. It will use this view, its assigned framebuffer and layout to offset and clip the drawing accordingly. This effectively removes any notion of "stage framebuffer", since each stage now may consist of multiple framebuffers. Therefore, API involving this has been deprecated and made no-ops; namely clutter_stage_ensure_context(). Callers are now assumed to either always use a framebuffer reference explicitly, or push/pop the framebuffer of a given view where the code has not yet changed to use the explicit-buffer-using cogl API. Currently only the nested X11 backend supports this mode fully, and the per view framebuffers are all offscreen. Upon frame completion, it'll blit each view's framebuffer onto the onscreen framebuffer before swapping. Other backends (X11 CM and native/KMS) are adapted to manage a full-stage view. The X11 CM backend will continue to use this method, while the native/KMS backend will be adopted to use multiple view drawing. https://bugzilla.gnome.org/show_bug.cgi?id=768976
2016-05-27 03:09:24 +00:00
PROP_LAST
};
static GParamSpec *obj_props[PROP_LAST];
typedef struct _ClutterStageViewPrivate
{
cairo_rectangle_int_t layout;
int scale;
Introduce regional stage rendering Add support for drawing a stage using multiple framebuffers each making up one part of the stage. This works by the stage backend (ClutterStageWindow) providing a list of views which will be for splitting up the stage in different regions. A view layout, for now, is a set of rectangles. The stage window (i.e. stage "backend" will use this information when drawing a frame, using one framebuffer for each view. The scene graph is adapted to explictly take a view when painting the stage. It will use this view, its assigned framebuffer and layout to offset and clip the drawing accordingly. This effectively removes any notion of "stage framebuffer", since each stage now may consist of multiple framebuffers. Therefore, API involving this has been deprecated and made no-ops; namely clutter_stage_ensure_context(). Callers are now assumed to either always use a framebuffer reference explicitly, or push/pop the framebuffer of a given view where the code has not yet changed to use the explicit-buffer-using cogl API. Currently only the nested X11 backend supports this mode fully, and the per view framebuffers are all offscreen. Upon frame completion, it'll blit each view's framebuffer onto the onscreen framebuffer before swapping. Other backends (X11 CM and native/KMS) are adapted to manage a full-stage view. The X11 CM backend will continue to use this method, while the native/KMS backend will be adopted to use multiple view drawing. https://bugzilla.gnome.org/show_bug.cgi?id=768976
2016-05-27 03:09:24 +00:00
CoglFramebuffer *framebuffer;
CoglOffscreen *offscreen;
CoglPipeline *pipeline;
Introduce regional stage rendering Add support for drawing a stage using multiple framebuffers each making up one part of the stage. This works by the stage backend (ClutterStageWindow) providing a list of views which will be for splitting up the stage in different regions. A view layout, for now, is a set of rectangles. The stage window (i.e. stage "backend" will use this information when drawing a frame, using one framebuffer for each view. The scene graph is adapted to explictly take a view when painting the stage. It will use this view, its assigned framebuffer and layout to offset and clip the drawing accordingly. This effectively removes any notion of "stage framebuffer", since each stage now may consist of multiple framebuffers. Therefore, API involving this has been deprecated and made no-ops; namely clutter_stage_ensure_context(). Callers are now assumed to either always use a framebuffer reference explicitly, or push/pop the framebuffer of a given view where the code has not yet changed to use the explicit-buffer-using cogl API. Currently only the nested X11 backend supports this mode fully, and the per view framebuffers are all offscreen. Upon frame completion, it'll blit each view's framebuffer onto the onscreen framebuffer before swapping. Other backends (X11 CM and native/KMS) are adapted to manage a full-stage view. The X11 CM backend will continue to use this method, while the native/KMS backend will be adopted to use multiple view drawing. https://bugzilla.gnome.org/show_bug.cgi?id=768976
2016-05-27 03:09:24 +00:00
guint dirty_viewport : 1;
guint dirty_projection : 1;
} ClutterStageViewPrivate;
G_DEFINE_TYPE_WITH_PRIVATE (ClutterStageView, clutter_stage_view, G_TYPE_OBJECT)
void
clutter_stage_view_get_layout (ClutterStageView *view,
cairo_rectangle_int_t *rect)
{
ClutterStageViewPrivate *priv =
clutter_stage_view_get_instance_private (view);
*rect = priv->layout;
}
CoglFramebuffer *
clutter_stage_view_get_framebuffer (ClutterStageView *view)
{
ClutterStageViewPrivate *priv =
clutter_stage_view_get_instance_private (view);
if (priv->offscreen)
return priv->offscreen;
else
return priv->framebuffer;
}
CoglFramebuffer *
clutter_stage_view_get_onscreen (ClutterStageView *view)
Introduce regional stage rendering Add support for drawing a stage using multiple framebuffers each making up one part of the stage. This works by the stage backend (ClutterStageWindow) providing a list of views which will be for splitting up the stage in different regions. A view layout, for now, is a set of rectangles. The stage window (i.e. stage "backend" will use this information when drawing a frame, using one framebuffer for each view. The scene graph is adapted to explictly take a view when painting the stage. It will use this view, its assigned framebuffer and layout to offset and clip the drawing accordingly. This effectively removes any notion of "stage framebuffer", since each stage now may consist of multiple framebuffers. Therefore, API involving this has been deprecated and made no-ops; namely clutter_stage_ensure_context(). Callers are now assumed to either always use a framebuffer reference explicitly, or push/pop the framebuffer of a given view where the code has not yet changed to use the explicit-buffer-using cogl API. Currently only the nested X11 backend supports this mode fully, and the per view framebuffers are all offscreen. Upon frame completion, it'll blit each view's framebuffer onto the onscreen framebuffer before swapping. Other backends (X11 CM and native/KMS) are adapted to manage a full-stage view. The X11 CM backend will continue to use this method, while the native/KMS backend will be adopted to use multiple view drawing. https://bugzilla.gnome.org/show_bug.cgi?id=768976
2016-05-27 03:09:24 +00:00
{
ClutterStageViewPrivate *priv =
clutter_stage_view_get_instance_private (view);
return priv->framebuffer;
}
static void
clutter_stage_view_ensure_offscreen_blit_pipeline (ClutterStageView *view)
{
ClutterStageViewPrivate *priv =
clutter_stage_view_get_instance_private (view);
ClutterStageViewClass *view_class =
CLUTTER_STAGE_VIEW_GET_CLASS (view);
g_assert (priv->offscreen != NULL);
if (priv->pipeline)
return;
priv->pipeline =
cogl_pipeline_new (cogl_framebuffer_get_context (priv->offscreen));
cogl_pipeline_set_layer_filters (priv->pipeline, 0,
COGL_PIPELINE_FILTER_NEAREST,
COGL_PIPELINE_FILTER_NEAREST);
cogl_pipeline_set_layer_texture (priv->pipeline, 0,
cogl_offscreen_get_texture (priv->offscreen));
cogl_pipeline_set_layer_wrap_mode (priv->pipeline, 0,
COGL_PIPELINE_WRAP_MODE_CLAMP_TO_EDGE);
if (view_class->setup_offscreen_blit_pipeline)
view_class->setup_offscreen_blit_pipeline (view, priv->pipeline);
}
void
clutter_stage_view_invalidate_offscreen_blit_pipeline (ClutterStageView *view)
{
ClutterStageViewPrivate *priv =
clutter_stage_view_get_instance_private (view);
g_clear_pointer (&priv->pipeline, cogl_object_unref);
}
void
clutter_stage_view_blit_offscreen (ClutterStageView *view,
const cairo_rectangle_int_t *rect)
{
ClutterStageViewPrivate *priv =
clutter_stage_view_get_instance_private (view);
CoglMatrix matrix;
clutter_stage_view_ensure_offscreen_blit_pipeline (view);
cogl_framebuffer_push_matrix (priv->framebuffer);
/* Set transform so 0,0 is on the top left corner and 1,1 on
* the bottom right corner.
*/
cogl_matrix_init_identity (&matrix);
cogl_matrix_translate (&matrix, -1, 1, 0);
cogl_matrix_scale (&matrix, 2, -2, 0);
cogl_framebuffer_set_projection_matrix (priv->framebuffer, &matrix);
cogl_framebuffer_draw_rectangle (priv->framebuffer,
priv->pipeline,
0, 0, 1, 1);
cogl_framebuffer_pop_matrix (priv->framebuffer);
}
int
clutter_stage_view_get_scale (ClutterStageView *view)
{
ClutterStageViewPrivate *priv =
clutter_stage_view_get_instance_private (view);
return priv->scale;
}
Introduce regional stage rendering Add support for drawing a stage using multiple framebuffers each making up one part of the stage. This works by the stage backend (ClutterStageWindow) providing a list of views which will be for splitting up the stage in different regions. A view layout, for now, is a set of rectangles. The stage window (i.e. stage "backend" will use this information when drawing a frame, using one framebuffer for each view. The scene graph is adapted to explictly take a view when painting the stage. It will use this view, its assigned framebuffer and layout to offset and clip the drawing accordingly. This effectively removes any notion of "stage framebuffer", since each stage now may consist of multiple framebuffers. Therefore, API involving this has been deprecated and made no-ops; namely clutter_stage_ensure_context(). Callers are now assumed to either always use a framebuffer reference explicitly, or push/pop the framebuffer of a given view where the code has not yet changed to use the explicit-buffer-using cogl API. Currently only the nested X11 backend supports this mode fully, and the per view framebuffers are all offscreen. Upon frame completion, it'll blit each view's framebuffer onto the onscreen framebuffer before swapping. Other backends (X11 CM and native/KMS) are adapted to manage a full-stage view. The X11 CM backend will continue to use this method, while the native/KMS backend will be adopted to use multiple view drawing. https://bugzilla.gnome.org/show_bug.cgi?id=768976
2016-05-27 03:09:24 +00:00
gboolean
clutter_stage_view_is_dirty_viewport (ClutterStageView *view)
{
ClutterStageViewPrivate *priv =
clutter_stage_view_get_instance_private (view);
return priv->dirty_viewport;
}
void
clutter_stage_view_set_dirty_viewport (ClutterStageView *view,
gboolean dirty)
{
ClutterStageViewPrivate *priv =
clutter_stage_view_get_instance_private (view);
priv->dirty_viewport = dirty;
}
gboolean
clutter_stage_view_is_dirty_projection (ClutterStageView *view)
{
ClutterStageViewPrivate *priv =
clutter_stage_view_get_instance_private (view);
return priv->dirty_projection;
}
void
clutter_stage_view_set_dirty_projection (ClutterStageView *view,
gboolean dirty)
{
ClutterStageViewPrivate *priv =
clutter_stage_view_get_instance_private (view);
priv->dirty_projection = dirty;
}
void
clutter_stage_view_get_offscreen_transformation_matrix (ClutterStageView *view,
CoglMatrix *matrix)
{
ClutterStageViewClass *view_class = CLUTTER_STAGE_VIEW_GET_CLASS (view);
view_class->get_offscreen_transformation_matrix (view, matrix);
}
void
clutter_stage_view_transform_to_onscreen (ClutterStageView *view,
gfloat *x,
gfloat *y)
{
gfloat z = 0, w = 1;
CoglMatrix matrix;
clutter_stage_view_get_offscreen_transformation_matrix (view, &matrix);
cogl_matrix_get_inverse (&matrix, &matrix);
cogl_matrix_transform_point (&matrix, x, y, &z, &w);
}
static void
clutter_stage_default_get_offscreen_transformation_matrix (ClutterStageView *view,
CoglMatrix *matrix)
{
cogl_matrix_init_identity (matrix);
}
Introduce regional stage rendering Add support for drawing a stage using multiple framebuffers each making up one part of the stage. This works by the stage backend (ClutterStageWindow) providing a list of views which will be for splitting up the stage in different regions. A view layout, for now, is a set of rectangles. The stage window (i.e. stage "backend" will use this information when drawing a frame, using one framebuffer for each view. The scene graph is adapted to explictly take a view when painting the stage. It will use this view, its assigned framebuffer and layout to offset and clip the drawing accordingly. This effectively removes any notion of "stage framebuffer", since each stage now may consist of multiple framebuffers. Therefore, API involving this has been deprecated and made no-ops; namely clutter_stage_ensure_context(). Callers are now assumed to either always use a framebuffer reference explicitly, or push/pop the framebuffer of a given view where the code has not yet changed to use the explicit-buffer-using cogl API. Currently only the nested X11 backend supports this mode fully, and the per view framebuffers are all offscreen. Upon frame completion, it'll blit each view's framebuffer onto the onscreen framebuffer before swapping. Other backends (X11 CM and native/KMS) are adapted to manage a full-stage view. The X11 CM backend will continue to use this method, while the native/KMS backend will be adopted to use multiple view drawing. https://bugzilla.gnome.org/show_bug.cgi?id=768976
2016-05-27 03:09:24 +00:00
static void
clutter_stage_view_get_property (GObject *object,
guint prop_id,
GValue *value,
GParamSpec *pspec)
{
ClutterStageView *view = CLUTTER_STAGE_VIEW (object);
ClutterStageViewPrivate *priv =
clutter_stage_view_get_instance_private (view);
switch (prop_id)
{
case PROP_LAYOUT:
g_value_set_boxed (value, &priv->layout);
break;
case PROP_FRAMEBUFFER:
g_value_set_boxed (value, priv->framebuffer);
break;
case PROP_OFFSCREEN:
g_value_set_boxed (value, priv->offscreen);
break;
case PROP_SCALE:
g_value_set_int (value, priv->scale);
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
Introduce regional stage rendering Add support for drawing a stage using multiple framebuffers each making up one part of the stage. This works by the stage backend (ClutterStageWindow) providing a list of views which will be for splitting up the stage in different regions. A view layout, for now, is a set of rectangles. The stage window (i.e. stage "backend" will use this information when drawing a frame, using one framebuffer for each view. The scene graph is adapted to explictly take a view when painting the stage. It will use this view, its assigned framebuffer and layout to offset and clip the drawing accordingly. This effectively removes any notion of "stage framebuffer", since each stage now may consist of multiple framebuffers. Therefore, API involving this has been deprecated and made no-ops; namely clutter_stage_ensure_context(). Callers are now assumed to either always use a framebuffer reference explicitly, or push/pop the framebuffer of a given view where the code has not yet changed to use the explicit-buffer-using cogl API. Currently only the nested X11 backend supports this mode fully, and the per view framebuffers are all offscreen. Upon frame completion, it'll blit each view's framebuffer onto the onscreen framebuffer before swapping. Other backends (X11 CM and native/KMS) are adapted to manage a full-stage view. The X11 CM backend will continue to use this method, while the native/KMS backend will be adopted to use multiple view drawing. https://bugzilla.gnome.org/show_bug.cgi?id=768976
2016-05-27 03:09:24 +00:00
}
}
static void
clutter_stage_view_set_property (GObject *object,
guint prop_id,
const GValue *value,
GParamSpec *pspec)
{
ClutterStageView *view = CLUTTER_STAGE_VIEW (object);
ClutterStageViewPrivate *priv =
clutter_stage_view_get_instance_private (view);
cairo_rectangle_int_t *layout;
switch (prop_id)
{
case PROP_LAYOUT:
layout = g_value_get_boxed (value);
priv->layout = *layout;
break;
case PROP_FRAMEBUFFER:
priv->framebuffer = g_value_dup_boxed (value);
Introduce regional stage rendering Add support for drawing a stage using multiple framebuffers each making up one part of the stage. This works by the stage backend (ClutterStageWindow) providing a list of views which will be for splitting up the stage in different regions. A view layout, for now, is a set of rectangles. The stage window (i.e. stage "backend" will use this information when drawing a frame, using one framebuffer for each view. The scene graph is adapted to explictly take a view when painting the stage. It will use this view, its assigned framebuffer and layout to offset and clip the drawing accordingly. This effectively removes any notion of "stage framebuffer", since each stage now may consist of multiple framebuffers. Therefore, API involving this has been deprecated and made no-ops; namely clutter_stage_ensure_context(). Callers are now assumed to either always use a framebuffer reference explicitly, or push/pop the framebuffer of a given view where the code has not yet changed to use the explicit-buffer-using cogl API. Currently only the nested X11 backend supports this mode fully, and the per view framebuffers are all offscreen. Upon frame completion, it'll blit each view's framebuffer onto the onscreen framebuffer before swapping. Other backends (X11 CM and native/KMS) are adapted to manage a full-stage view. The X11 CM backend will continue to use this method, while the native/KMS backend will be adopted to use multiple view drawing. https://bugzilla.gnome.org/show_bug.cgi?id=768976
2016-05-27 03:09:24 +00:00
break;
case PROP_OFFSCREEN:
priv->offscreen = g_value_dup_boxed (value);
break;
case PROP_SCALE:
priv->scale = g_value_get_int (value);
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
Introduce regional stage rendering Add support for drawing a stage using multiple framebuffers each making up one part of the stage. This works by the stage backend (ClutterStageWindow) providing a list of views which will be for splitting up the stage in different regions. A view layout, for now, is a set of rectangles. The stage window (i.e. stage "backend" will use this information when drawing a frame, using one framebuffer for each view. The scene graph is adapted to explictly take a view when painting the stage. It will use this view, its assigned framebuffer and layout to offset and clip the drawing accordingly. This effectively removes any notion of "stage framebuffer", since each stage now may consist of multiple framebuffers. Therefore, API involving this has been deprecated and made no-ops; namely clutter_stage_ensure_context(). Callers are now assumed to either always use a framebuffer reference explicitly, or push/pop the framebuffer of a given view where the code has not yet changed to use the explicit-buffer-using cogl API. Currently only the nested X11 backend supports this mode fully, and the per view framebuffers are all offscreen. Upon frame completion, it'll blit each view's framebuffer onto the onscreen framebuffer before swapping. Other backends (X11 CM and native/KMS) are adapted to manage a full-stage view. The X11 CM backend will continue to use this method, while the native/KMS backend will be adopted to use multiple view drawing. https://bugzilla.gnome.org/show_bug.cgi?id=768976
2016-05-27 03:09:24 +00:00
}
}
static void
clutter_stage_view_dispose (GObject *object)
{
ClutterStageView *view = CLUTTER_STAGE_VIEW (object);
ClutterStageViewPrivate *priv =
clutter_stage_view_get_instance_private (view);
g_clear_pointer (&priv->framebuffer, cogl_object_unref);
g_clear_pointer (&priv->offscreen, cogl_object_unref);
g_clear_pointer (&priv->pipeline, cogl_object_unref);
G_OBJECT_CLASS (clutter_stage_view_parent_class)->dispose (object);
Introduce regional stage rendering Add support for drawing a stage using multiple framebuffers each making up one part of the stage. This works by the stage backend (ClutterStageWindow) providing a list of views which will be for splitting up the stage in different regions. A view layout, for now, is a set of rectangles. The stage window (i.e. stage "backend" will use this information when drawing a frame, using one framebuffer for each view. The scene graph is adapted to explictly take a view when painting the stage. It will use this view, its assigned framebuffer and layout to offset and clip the drawing accordingly. This effectively removes any notion of "stage framebuffer", since each stage now may consist of multiple framebuffers. Therefore, API involving this has been deprecated and made no-ops; namely clutter_stage_ensure_context(). Callers are now assumed to either always use a framebuffer reference explicitly, or push/pop the framebuffer of a given view where the code has not yet changed to use the explicit-buffer-using cogl API. Currently only the nested X11 backend supports this mode fully, and the per view framebuffers are all offscreen. Upon frame completion, it'll blit each view's framebuffer onto the onscreen framebuffer before swapping. Other backends (X11 CM and native/KMS) are adapted to manage a full-stage view. The X11 CM backend will continue to use this method, while the native/KMS backend will be adopted to use multiple view drawing. https://bugzilla.gnome.org/show_bug.cgi?id=768976
2016-05-27 03:09:24 +00:00
}
static void
clutter_stage_view_init (ClutterStageView *view)
{
ClutterStageViewPrivate *priv =
clutter_stage_view_get_instance_private (view);
priv->dirty_viewport = TRUE;
priv->dirty_projection = TRUE;
priv->scale = 1;
Introduce regional stage rendering Add support for drawing a stage using multiple framebuffers each making up one part of the stage. This works by the stage backend (ClutterStageWindow) providing a list of views which will be for splitting up the stage in different regions. A view layout, for now, is a set of rectangles. The stage window (i.e. stage "backend" will use this information when drawing a frame, using one framebuffer for each view. The scene graph is adapted to explictly take a view when painting the stage. It will use this view, its assigned framebuffer and layout to offset and clip the drawing accordingly. This effectively removes any notion of "stage framebuffer", since each stage now may consist of multiple framebuffers. Therefore, API involving this has been deprecated and made no-ops; namely clutter_stage_ensure_context(). Callers are now assumed to either always use a framebuffer reference explicitly, or push/pop the framebuffer of a given view where the code has not yet changed to use the explicit-buffer-using cogl API. Currently only the nested X11 backend supports this mode fully, and the per view framebuffers are all offscreen. Upon frame completion, it'll blit each view's framebuffer onto the onscreen framebuffer before swapping. Other backends (X11 CM and native/KMS) are adapted to manage a full-stage view. The X11 CM backend will continue to use this method, while the native/KMS backend will be adopted to use multiple view drawing. https://bugzilla.gnome.org/show_bug.cgi?id=768976
2016-05-27 03:09:24 +00:00
}
static void
clutter_stage_view_class_init (ClutterStageViewClass *klass)
{
GObjectClass *object_class = G_OBJECT_CLASS (klass);
klass->get_offscreen_transformation_matrix =
clutter_stage_default_get_offscreen_transformation_matrix;
Introduce regional stage rendering Add support for drawing a stage using multiple framebuffers each making up one part of the stage. This works by the stage backend (ClutterStageWindow) providing a list of views which will be for splitting up the stage in different regions. A view layout, for now, is a set of rectangles. The stage window (i.e. stage "backend" will use this information when drawing a frame, using one framebuffer for each view. The scene graph is adapted to explictly take a view when painting the stage. It will use this view, its assigned framebuffer and layout to offset and clip the drawing accordingly. This effectively removes any notion of "stage framebuffer", since each stage now may consist of multiple framebuffers. Therefore, API involving this has been deprecated and made no-ops; namely clutter_stage_ensure_context(). Callers are now assumed to either always use a framebuffer reference explicitly, or push/pop the framebuffer of a given view where the code has not yet changed to use the explicit-buffer-using cogl API. Currently only the nested X11 backend supports this mode fully, and the per view framebuffers are all offscreen. Upon frame completion, it'll blit each view's framebuffer onto the onscreen framebuffer before swapping. Other backends (X11 CM and native/KMS) are adapted to manage a full-stage view. The X11 CM backend will continue to use this method, while the native/KMS backend will be adopted to use multiple view drawing. https://bugzilla.gnome.org/show_bug.cgi?id=768976
2016-05-27 03:09:24 +00:00
object_class->get_property = clutter_stage_view_get_property;
object_class->set_property = clutter_stage_view_set_property;
object_class->dispose = clutter_stage_view_dispose;
obj_props[PROP_LAYOUT] =
g_param_spec_boxed ("layout",
"View layout",
"The view layout on the screen",
CAIRO_GOBJECT_TYPE_RECTANGLE_INT,
G_PARAM_READWRITE |
G_PARAM_STATIC_STRINGS);
obj_props[PROP_FRAMEBUFFER] =
g_param_spec_boxed ("framebuffer",
"View framebuffer",
"The front buffer of the view",
COGL_TYPE_HANDLE,
G_PARAM_READWRITE |
G_PARAM_STATIC_STRINGS);
obj_props[PROP_OFFSCREEN] =
g_param_spec_boxed ("offscreen",
"Offscreen buffer",
"Framebuffer used as intermediate buffer",
Introduce regional stage rendering Add support for drawing a stage using multiple framebuffers each making up one part of the stage. This works by the stage backend (ClutterStageWindow) providing a list of views which will be for splitting up the stage in different regions. A view layout, for now, is a set of rectangles. The stage window (i.e. stage "backend" will use this information when drawing a frame, using one framebuffer for each view. The scene graph is adapted to explictly take a view when painting the stage. It will use this view, its assigned framebuffer and layout to offset and clip the drawing accordingly. This effectively removes any notion of "stage framebuffer", since each stage now may consist of multiple framebuffers. Therefore, API involving this has been deprecated and made no-ops; namely clutter_stage_ensure_context(). Callers are now assumed to either always use a framebuffer reference explicitly, or push/pop the framebuffer of a given view where the code has not yet changed to use the explicit-buffer-using cogl API. Currently only the nested X11 backend supports this mode fully, and the per view framebuffers are all offscreen. Upon frame completion, it'll blit each view's framebuffer onto the onscreen framebuffer before swapping. Other backends (X11 CM and native/KMS) are adapted to manage a full-stage view. The X11 CM backend will continue to use this method, while the native/KMS backend will be adopted to use multiple view drawing. https://bugzilla.gnome.org/show_bug.cgi?id=768976
2016-05-27 03:09:24 +00:00
COGL_TYPE_HANDLE,
G_PARAM_READWRITE |
G_PARAM_CONSTRUCT_ONLY |
Introduce regional stage rendering Add support for drawing a stage using multiple framebuffers each making up one part of the stage. This works by the stage backend (ClutterStageWindow) providing a list of views which will be for splitting up the stage in different regions. A view layout, for now, is a set of rectangles. The stage window (i.e. stage "backend" will use this information when drawing a frame, using one framebuffer for each view. The scene graph is adapted to explictly take a view when painting the stage. It will use this view, its assigned framebuffer and layout to offset and clip the drawing accordingly. This effectively removes any notion of "stage framebuffer", since each stage now may consist of multiple framebuffers. Therefore, API involving this has been deprecated and made no-ops; namely clutter_stage_ensure_context(). Callers are now assumed to either always use a framebuffer reference explicitly, or push/pop the framebuffer of a given view where the code has not yet changed to use the explicit-buffer-using cogl API. Currently only the nested X11 backend supports this mode fully, and the per view framebuffers are all offscreen. Upon frame completion, it'll blit each view's framebuffer onto the onscreen framebuffer before swapping. Other backends (X11 CM and native/KMS) are adapted to manage a full-stage view. The X11 CM backend will continue to use this method, while the native/KMS backend will be adopted to use multiple view drawing. https://bugzilla.gnome.org/show_bug.cgi?id=768976
2016-05-27 03:09:24 +00:00
G_PARAM_STATIC_STRINGS);
obj_props[PROP_SCALE] =
g_param_spec_int ("scale",
"View scale",
"The view scale",
1, G_MAXINT, 1,
G_PARAM_READWRITE |
G_PARAM_STATIC_STRINGS);
Introduce regional stage rendering Add support for drawing a stage using multiple framebuffers each making up one part of the stage. This works by the stage backend (ClutterStageWindow) providing a list of views which will be for splitting up the stage in different regions. A view layout, for now, is a set of rectangles. The stage window (i.e. stage "backend" will use this information when drawing a frame, using one framebuffer for each view. The scene graph is adapted to explictly take a view when painting the stage. It will use this view, its assigned framebuffer and layout to offset and clip the drawing accordingly. This effectively removes any notion of "stage framebuffer", since each stage now may consist of multiple framebuffers. Therefore, API involving this has been deprecated and made no-ops; namely clutter_stage_ensure_context(). Callers are now assumed to either always use a framebuffer reference explicitly, or push/pop the framebuffer of a given view where the code has not yet changed to use the explicit-buffer-using cogl API. Currently only the nested X11 backend supports this mode fully, and the per view framebuffers are all offscreen. Upon frame completion, it'll blit each view's framebuffer onto the onscreen framebuffer before swapping. Other backends (X11 CM and native/KMS) are adapted to manage a full-stage view. The X11 CM backend will continue to use this method, while the native/KMS backend will be adopted to use multiple view drawing. https://bugzilla.gnome.org/show_bug.cgi?id=768976
2016-05-27 03:09:24 +00:00
g_object_class_install_properties (object_class, PROP_LAST, obj_props);
}