mutter/src/backends/native/meta-kms-connector.c

1175 lines
34 KiB
C
Raw Normal View History

/*
* Copyright (C) 2019 Red Hat
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
* 02111-1307, USA.
*/
#include "config.h"
#include "backends/meta-output.h"
#include "backends/native/meta-kms-connector.h"
#include "backends/native/meta-kms-connector-private.h"
#include <errno.h>
#include "backends/native/meta-kms-crtc.h"
#include "backends/native/meta-kms-device-private.h"
#include "backends/native/meta-kms-impl-device.h"
#include "backends/native/meta-kms-mode-private.h"
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 22:36:41 +02:00
#include "backends/native/meta-kms-update-private.h"
typedef struct _MetaKmsConnectorPropTable
{
MetaKmsProp props[META_KMS_CONNECTOR_N_PROPS];
MetaKmsEnum dpms_enum[META_KMS_CONNECTOR_DPMS_N_PROPS];
MetaKmsEnum underscan_enum[META_KMS_CONNECTOR_UNDERSCAN_N_PROPS];
MetaKmsEnum privacy_screen_sw_enum[META_KMS_CONNECTOR_PRIVACY_SCREEN_N_PROPS];
MetaKmsEnum privacy_screen_hw_enum[META_KMS_CONNECTOR_PRIVACY_SCREEN_N_PROPS];
MetaKmsEnum scaling_mode_enum[META_KMS_CONNECTOR_SCALING_MODE_N_PROPS];
MetaKmsEnum panel_orientation_enum[META_KMS_CONNECTOR_PANEL_ORIENTATION_N_PROPS];
} MetaKmsConnectorPropTable;
struct _MetaKmsConnector
{
GObject parent;
MetaKmsDevice *device;
uint32_t id;
uint32_t type;
uint32_t type_id;
char *name;
drmModeConnection connection;
MetaKmsConnectorState *current_state;
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 22:36:41 +02:00
MetaKmsConnectorPropTable prop_table;
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 22:36:41 +02:00
uint32_t edid_blob_id;
uint32_t tile_blob_id;
gboolean fd_held;
};
G_DEFINE_TYPE (MetaKmsConnector, meta_kms_connector, G_TYPE_OBJECT)
typedef enum _MetaKmsPrivacyScreenHwState
{
META_KMS_PRIVACY_SCREEN_HW_STATE_DISABLED,
META_KMS_PRIVACY_SCREEN_HW_STATE_ENABLED,
META_KMS_PRIVACY_SCREEN_HW_STATE_DISABLED_LOCKED,
META_KMS_PRIVACY_SCREEN_HW_STATE_ENABLED_LOCKED,
} MetaKmsPrivacyScreenHwState;
MetaKmsDevice *
meta_kms_connector_get_device (MetaKmsConnector *connector)
{
return connector->device;
}
uint32_t
meta_kms_connector_get_prop_id (MetaKmsConnector *connector,
MetaKmsConnectorProp prop)
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 22:36:41 +02:00
{
return connector->prop_table.props[prop].prop_id;
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 22:36:41 +02:00
}
const char *
meta_kms_connector_get_prop_name (MetaKmsConnector *connector,
MetaKmsConnectorProp prop)
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 22:36:41 +02:00
{
return connector->prop_table.props[prop].name;
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 22:36:41 +02:00
}
uint64_t
meta_kms_connector_get_prop_drm_value (MetaKmsConnector *connector,
MetaKmsConnectorProp property,
uint64_t value)
{
MetaKmsProp *prop = &connector->prop_table.props[property];
return meta_kms_prop_convert_value (prop, value);
}
uint32_t
meta_kms_connector_get_connector_type (MetaKmsConnector *connector)
{
return connector->type;
}
uint32_t
meta_kms_connector_get_id (MetaKmsConnector *connector)
{
return connector->id;
}
const char *
meta_kms_connector_get_name (MetaKmsConnector *connector)
{
return connector->name;
}
gboolean
meta_kms_connector_can_clone (MetaKmsConnector *connector,
MetaKmsConnector *other_connector)
{
MetaKmsConnectorState *state = connector->current_state;
MetaKmsConnectorState *other_state = other_connector->current_state;
if (state->common_possible_clones == 0 ||
other_state->common_possible_clones == 0)
return FALSE;
if (state->encoder_device_idxs != other_state->encoder_device_idxs)
return FALSE;
return TRUE;
}
MetaKmsMode *
meta_kms_connector_get_preferred_mode (MetaKmsConnector *connector)
{
const MetaKmsConnectorState *state;
GList *l;
state = meta_kms_connector_get_current_state (connector);
for (l = state->modes; l; l = l->next)
{
MetaKmsMode *mode = l->data;
const drmModeModeInfo *drm_mode;
drm_mode = meta_kms_mode_get_drm_mode (mode);
if (drm_mode->type & DRM_MODE_TYPE_PREFERRED)
return mode;
}
return NULL;
}
const MetaKmsConnectorState *
meta_kms_connector_get_current_state (MetaKmsConnector *connector)
{
return connector->current_state;
}
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 22:36:41 +02:00
gboolean
meta_kms_connector_is_underscanning_supported (MetaKmsConnector *connector)
{
uint32_t underscan_prop_id;
underscan_prop_id =
meta_kms_connector_get_prop_id (connector,
META_KMS_CONNECTOR_PROP_UNDERSCAN);
return underscan_prop_id != 0;
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 22:36:41 +02:00
}
gboolean
meta_kms_connector_is_privacy_screen_supported (MetaKmsConnector *connector)
{
return meta_kms_connector_get_prop_id (connector,
META_KMS_CONNECTOR_PROP_PRIVACY_SCREEN_HW_STATE) != 0;
}
static gboolean
has_privacy_screen_software_toggle (MetaKmsConnector *connector)
{
return meta_kms_connector_get_prop_id (connector,
META_KMS_CONNECTOR_PROP_PRIVACY_SCREEN_SW_STATE) != 0;
}
const MetaKmsRange *
meta_kms_connector_get_max_bpc (MetaKmsConnector *connector)
{
const MetaKmsRange *range = NULL;
if (connector->current_state &&
meta_kms_connector_get_prop_id (connector,
META_KMS_CONNECTOR_PROP_MAX_BPC))
range = &connector->current_state->max_bpc;
return range;
}
static void
sync_fd_held (MetaKmsConnector *connector,
MetaKmsImplDevice *impl_device)
{
gboolean should_hold_fd;
should_hold_fd =
connector->current_state &&
connector->current_state->current_crtc_id != 0;
if (connector->fd_held == should_hold_fd)
return;
if (should_hold_fd)
meta_kms_impl_device_hold_fd (impl_device);
else
meta_kms_impl_device_unhold_fd (impl_device);
connector->fd_held = should_hold_fd;
}
static void
set_panel_orientation (MetaKmsConnectorState *state,
MetaKmsProp *panel_orientation)
{
MetaMonitorTransform transform;
MetaKmsConnectorPanelOrientation orientation = panel_orientation->value;
switch (orientation)
{
case META_KMS_CONNECTOR_PANEL_ORIENTATION_UPSIDE_DOWN:
transform = META_MONITOR_TRANSFORM_180;
break;
case META_KMS_CONNECTOR_PANEL_ORIENTATION_LEFT_SIDE_UP:
transform = META_MONITOR_TRANSFORM_90;
break;
case META_KMS_CONNECTOR_PANEL_ORIENTATION_RIGHT_SIDE_UP:
transform = META_MONITOR_TRANSFORM_270;
break;
default:
transform = META_MONITOR_TRANSFORM_NORMAL;
break;
}
state->panel_orientation_transform = transform;
}
static void
set_privacy_screen (MetaKmsConnectorState *state,
MetaKmsConnector *connector,
MetaKmsProp *hw_state)
{
MetaKmsConnectorPrivacyScreen privacy_screen = hw_state->value;
if (!meta_kms_connector_is_privacy_screen_supported (connector))
return;
switch (privacy_screen)
{
case META_KMS_PRIVACY_SCREEN_HW_STATE_DISABLED:
state->privacy_screen_state = META_PRIVACY_SCREEN_DISABLED;
break;
case META_KMS_PRIVACY_SCREEN_HW_STATE_DISABLED_LOCKED:
state->privacy_screen_state = META_PRIVACY_SCREEN_DISABLED;
state->privacy_screen_state |= META_PRIVACY_SCREEN_LOCKED;
break;
case META_KMS_PRIVACY_SCREEN_HW_STATE_ENABLED:
state->privacy_screen_state = META_PRIVACY_SCREEN_ENABLED;
break;
case META_KMS_PRIVACY_SCREEN_HW_STATE_ENABLED_LOCKED:
state->privacy_screen_state = META_PRIVACY_SCREEN_ENABLED;
state->privacy_screen_state |= META_PRIVACY_SCREEN_LOCKED;
break;
default:
state->privacy_screen_state = META_PRIVACY_SCREEN_DISABLED;
g_warning ("Unknown privacy screen state: %u", privacy_screen);
}
if (!has_privacy_screen_software_toggle (connector))
state->privacy_screen_state |= META_PRIVACY_SCREEN_LOCKED;
}
static void
state_set_properties (MetaKmsConnectorState *state,
MetaKmsImplDevice *impl_device,
MetaKmsConnector *connector,
drmModeConnector *drm_connector)
{
MetaKmsProp *props = connector->prop_table.props;
MetaKmsProp *prop;
prop = &props[META_KMS_CONNECTOR_PROP_SUGGESTED_X];
if (prop->prop_id)
state->suggested_x = prop->value;
prop = &props[META_KMS_CONNECTOR_PROP_SUGGESTED_Y];
if (prop->prop_id)
state->suggested_y = prop->value;
prop = &props[META_KMS_CONNECTOR_PROP_HOTPLUG_MODE_UPDATE];
if (prop->prop_id)
state->hotplug_mode_update = prop->value;
prop = &props[META_KMS_CONNECTOR_PROP_SCALING_MODE];
if (prop->prop_id)
state->has_scaling = TRUE;
prop = &props[META_KMS_CONNECTOR_PROP_PANEL_ORIENTATION];
if (prop->prop_id)
set_panel_orientation (state, prop);
prop = &props[META_KMS_CONNECTOR_PROP_NON_DESKTOP];
if (prop->prop_id)
state->non_desktop = prop->value;
prop = &props[META_KMS_CONNECTOR_PROP_PRIVACY_SCREEN_HW_STATE];
if (prop->prop_id)
set_privacy_screen (state, connector, prop);
prop = &props[META_KMS_CONNECTOR_PROP_MAX_BPC];
if (prop->prop_id)
{
state->max_bpc.value = prop->value;
state->max_bpc.min_value = prop->range_min;
state->max_bpc.max_value = prop->range_max;
}
}
static CoglSubpixelOrder
drm_subpixel_order_to_cogl_subpixel_order (drmModeSubPixel subpixel)
{
switch (subpixel)
{
case DRM_MODE_SUBPIXEL_NONE:
return COGL_SUBPIXEL_ORDER_NONE;
break;
case DRM_MODE_SUBPIXEL_HORIZONTAL_RGB:
return COGL_SUBPIXEL_ORDER_HORIZONTAL_RGB;
break;
case DRM_MODE_SUBPIXEL_HORIZONTAL_BGR:
return COGL_SUBPIXEL_ORDER_HORIZONTAL_BGR;
break;
case DRM_MODE_SUBPIXEL_VERTICAL_RGB:
return COGL_SUBPIXEL_ORDER_VERTICAL_RGB;
break;
case DRM_MODE_SUBPIXEL_VERTICAL_BGR:
return COGL_SUBPIXEL_ORDER_VERTICAL_BGR;
break;
case DRM_MODE_SUBPIXEL_UNKNOWN:
return COGL_SUBPIXEL_ORDER_UNKNOWN;
}
return COGL_SUBPIXEL_ORDER_UNKNOWN;
}
static void
state_set_edid (MetaKmsConnectorState *state,
MetaKmsConnector *connector,
MetaKmsImplDevice *impl_device,
uint32_t blob_id)
{
int fd;
drmModePropertyBlobPtr edid_blob;
GBytes *edid_data;
fd = meta_kms_impl_device_get_fd (impl_device);
edid_blob = drmModeGetPropertyBlob (fd, blob_id);
if (!edid_blob)
{
g_warning ("Failed to read EDID of connector %s: %s",
connector->name, g_strerror (errno));
return;
}
edid_data = g_bytes_new (edid_blob->data, edid_blob->length);
drmModeFreePropertyBlob (edid_blob);
state->edid_data = edid_data;
}
static void
state_set_tile_info (MetaKmsConnectorState *state,
MetaKmsConnector *connector,
MetaKmsImplDevice *impl_device,
uint32_t blob_id)
{
int fd;
drmModePropertyBlobPtr tile_blob;
state->tile_info = (MetaTileInfo) { 0 };
fd = meta_kms_impl_device_get_fd (impl_device);
tile_blob = drmModeGetPropertyBlob (fd, blob_id);
if (!tile_blob)
{
g_warning ("Failed to read TILE of connector %s: %s",
connector->name, strerror (errno));
return;
}
if (tile_blob->length > 0)
{
if (sscanf ((char *) tile_blob->data, "%d:%d:%d:%d:%d:%d:%d:%d",
&state->tile_info.group_id,
&state->tile_info.flags,
&state->tile_info.max_h_tiles,
&state->tile_info.max_v_tiles,
&state->tile_info.loc_h_tile,
&state->tile_info.loc_v_tile,
&state->tile_info.tile_w,
&state->tile_info.tile_h) != 8)
{
g_warning ("Couldn't understand TILE property blob of connector %s",
connector->name);
state->tile_info = (MetaTileInfo) { 0 };
}
}
drmModeFreePropertyBlob (tile_blob);
}
static void
state_set_blobs (MetaKmsConnectorState *state,
MetaKmsConnector *connector,
MetaKmsImplDevice *impl_device,
drmModeConnector *drm_connector)
{
MetaKmsProp *prop;
prop = &connector->prop_table.props[META_KMS_CONNECTOR_PROP_EDID];
if (prop->prop_id && prop->value)
state_set_edid (state, connector, impl_device, prop->value);
prop = &connector->prop_table.props[META_KMS_CONNECTOR_PROP_TILE];
if (prop->prop_id && prop->value)
state_set_tile_info (state, connector, impl_device, prop->value);
}
static void
state_set_physical_dimensions (MetaKmsConnectorState *state,
drmModeConnector *drm_connector)
{
state->width_mm = drm_connector->mmWidth;
state->height_mm = drm_connector->mmHeight;
}
static void
state_set_modes (MetaKmsConnectorState *state,
MetaKmsImplDevice *impl_device,
drmModeConnector *drm_connector)
{
int i;
for (i = 0; i < drm_connector->count_modes; i++)
{
MetaKmsMode *mode;
mode = meta_kms_mode_new (impl_device, &drm_connector->modes[i],
META_KMS_MODE_FLAG_NONE);
state->modes = g_list_prepend (state->modes, mode);
}
state->modes = g_list_reverse (state->modes);
}
static void
set_encoder_device_idx_bit (uint32_t *encoder_device_idxs,
uint32_t encoder_id,
MetaKmsImplDevice *impl_device,
drmModeRes *drm_resources)
{
int fd;
int i;
fd = meta_kms_impl_device_get_fd (impl_device);
for (i = 0; i < drm_resources->count_encoders; i++)
{
drmModeEncoder *drm_encoder;
drm_encoder = drmModeGetEncoder (fd, drm_resources->encoders[i]);
if (!drm_encoder)
continue;
if (drm_encoder->encoder_id == encoder_id)
{
*encoder_device_idxs |= (1 << i);
drmModeFreeEncoder (drm_encoder);
break;
}
drmModeFreeEncoder (drm_encoder);
}
}
static void
state_set_crtc_state (MetaKmsConnectorState *state,
drmModeConnector *drm_connector,
MetaKmsImplDevice *impl_device,
drmModeRes *drm_resources)
{
int fd;
int i;
uint32_t common_possible_crtcs;
uint32_t common_possible_clones;
uint32_t encoder_device_idxs;
fd = meta_kms_impl_device_get_fd (impl_device);
common_possible_crtcs = UINT32_MAX;
common_possible_clones = UINT32_MAX;
encoder_device_idxs = 0;
for (i = 0; i < drm_connector->count_encoders; i++)
{
drmModeEncoder *drm_encoder;
drm_encoder = drmModeGetEncoder (fd, drm_connector->encoders[i]);
if (!drm_encoder)
continue;
common_possible_crtcs &= drm_encoder->possible_crtcs;
common_possible_clones &= drm_encoder->possible_clones;
set_encoder_device_idx_bit (&encoder_device_idxs,
drm_encoder->encoder_id,
impl_device,
drm_resources);
if (drm_connector->encoder_id == drm_encoder->encoder_id)
state->current_crtc_id = drm_encoder->crtc_id;
drmModeFreeEncoder (drm_encoder);
}
state->common_possible_crtcs = common_possible_crtcs;
state->common_possible_clones = common_possible_clones;
state->encoder_device_idxs = encoder_device_idxs;
}
static MetaKmsConnectorState *
meta_kms_connector_state_new (void)
{
MetaKmsConnectorState *state;
state = g_new0 (MetaKmsConnectorState, 1);
state->suggested_x = -1;
state->suggested_y = -1;
return state;
}
static void
meta_kms_connector_state_free (MetaKmsConnectorState *state)
{
g_clear_pointer (&state->edid_data, g_bytes_unref);
g_list_free_full (state->modes, (GDestroyNotify) meta_kms_mode_free);
g_free (state);
}
G_DEFINE_AUTOPTR_CLEANUP_FUNC (MetaKmsConnectorState,
meta_kms_connector_state_free);
static gboolean
kms_modes_equal (GList *modes,
GList *other_modes)
{
GList *l;
if (g_list_length (modes) != g_list_length (other_modes))
return FALSE;
for (l = modes; l; l = l->next)
{
GList *k;
MetaKmsMode *mode = l->data;
for (k = other_modes; k; k = k->next)
{
MetaKmsMode *other_mode = k->data;
if (!meta_kms_mode_equal (mode, other_mode))
return FALSE;
}
}
return TRUE;
}
static MetaKmsResourceChanges
meta_kms_connector_state_changes (MetaKmsConnectorState *state,
MetaKmsConnectorState *new_state)
{
if (state->current_crtc_id != new_state->current_crtc_id)
return META_KMS_RESOURCE_CHANGE_FULL;
if (state->common_possible_crtcs != new_state->common_possible_crtcs)
return META_KMS_RESOURCE_CHANGE_FULL;
if (state->common_possible_clones != new_state->common_possible_clones)
return META_KMS_RESOURCE_CHANGE_FULL;
if (state->encoder_device_idxs != new_state->encoder_device_idxs)
return META_KMS_RESOURCE_CHANGE_FULL;
if (state->width_mm != new_state->width_mm)
return META_KMS_RESOURCE_CHANGE_FULL;
if (state->height_mm != new_state->height_mm)
return META_KMS_RESOURCE_CHANGE_FULL;
if (state->has_scaling != new_state->has_scaling)
return META_KMS_RESOURCE_CHANGE_FULL;
if (state->non_desktop != new_state->non_desktop)
return META_KMS_RESOURCE_CHANGE_FULL;
if (state->subpixel_order != new_state->subpixel_order)
return META_KMS_RESOURCE_CHANGE_FULL;
if (state->suggested_x != new_state->suggested_x)
return META_KMS_RESOURCE_CHANGE_FULL;
if (state->suggested_y != new_state->suggested_y)
return META_KMS_RESOURCE_CHANGE_FULL;
if (state->hotplug_mode_update != new_state->hotplug_mode_update)
return META_KMS_RESOURCE_CHANGE_FULL;
if (state->panel_orientation_transform !=
new_state->panel_orientation_transform)
return META_KMS_RESOURCE_CHANGE_FULL;
if (!meta_tile_info_equal (&state->tile_info, &new_state->tile_info))
return META_KMS_RESOURCE_CHANGE_FULL;
if ((state->edid_data && !new_state->edid_data) || !state->edid_data ||
!g_bytes_equal (state->edid_data, new_state->edid_data))
return META_KMS_RESOURCE_CHANGE_FULL;
if (!kms_modes_equal (state->modes, new_state->modes))
return META_KMS_RESOURCE_CHANGE_FULL;
if (state->max_bpc.value != new_state->max_bpc.value ||
state->max_bpc.min_value != new_state->max_bpc.min_value ||
state->max_bpc.max_value != new_state->max_bpc.max_value)
return META_KMS_RESOURCE_CHANGE_FULL;
if (state->privacy_screen_state != new_state->privacy_screen_state)
return META_KMS_RESOURCE_CHANGE_PRIVACY_SCREEN;
return META_KMS_RESOURCE_CHANGE_NONE;
}
static void
meta_kms_connector_update_state_changes (MetaKmsConnector *connector,
MetaKmsResourceChanges changes,
MetaKmsConnectorState *new_state)
{
MetaKmsConnectorState *current_state = connector->current_state;
g_return_if_fail (changes != META_KMS_RESOURCE_CHANGE_FULL);
if (changes & META_KMS_RESOURCE_CHANGE_PRIVACY_SCREEN)
current_state->privacy_screen_state = new_state->privacy_screen_state;
}
static MetaKmsResourceChanges
meta_kms_connector_read_state (MetaKmsConnector *connector,
MetaKmsImplDevice *impl_device,
drmModeConnector *drm_connector,
drmModeRes *drm_resources)
{
g_autoptr (MetaKmsConnectorState) state = NULL;
g_autoptr (MetaKmsConnectorState) current_state = NULL;
MetaKmsResourceChanges connector_changes;
MetaKmsResourceChanges changes;
current_state = g_steal_pointer (&connector->current_state);
changes = META_KMS_RESOURCE_CHANGE_NONE;
meta_kms_impl_device_update_prop_table (impl_device,
drm_connector->props,
drm_connector->prop_values,
drm_connector->count_props,
connector->prop_table.props,
META_KMS_CONNECTOR_N_PROPS);
if (!drm_connector)
{
if (current_state)
changes = META_KMS_RESOURCE_CHANGE_FULL;
goto out;
}
if (drm_connector->connection != DRM_MODE_CONNECTED)
{
if (drm_connector->connection != connector->connection)
{
connector->connection = drm_connector->connection;
changes |= META_KMS_RESOURCE_CHANGE_FULL;
}
goto out;
}
state = meta_kms_connector_state_new ();
state_set_blobs (state, connector, impl_device, drm_connector);
state_set_properties (state, impl_device, connector, drm_connector);
state->subpixel_order =
drm_subpixel_order_to_cogl_subpixel_order (drm_connector->subpixel);
state_set_physical_dimensions (state, drm_connector);
state_set_modes (state, impl_device, drm_connector);
state_set_crtc_state (state, drm_connector, impl_device, drm_resources);
if (drm_connector->connection != connector->connection)
{
connector->connection = drm_connector->connection;
changes |= META_KMS_RESOURCE_CHANGE_FULL;
}
if (!current_state)
connector_changes = META_KMS_RESOURCE_CHANGE_FULL;
else
connector_changes = meta_kms_connector_state_changes (current_state, state);
changes |= connector_changes;
if (!(changes & META_KMS_RESOURCE_CHANGE_FULL))
{
meta_kms_connector_update_state_changes (connector,
connector_changes,
state);
connector->current_state = g_steal_pointer (&current_state);
}
else
{
connector->current_state = g_steal_pointer (&state);
}
out:
sync_fd_held (connector, impl_device);
return changes;
}
MetaKmsResourceChanges
meta_kms_connector_update_state (MetaKmsConnector *connector,
kms/connector: Don't query the kernel twice when updating On hotplug, the events we receive from the kernel are async, and connectors in the kernel come and go as they please. In practice, this means that calling drmModeGetConnector() twice more or less directly after each other, there is no guarantee that the latter call will return anything if the former did. When updating the connector in response to hotplugs, we'd first update the list of existing connectors, and following that, query each and every one again for their current state, to update our internal representation; only the former handled drmModeGetConnector() returning NULL, meaning if unlucky, we'd end up doing a null pointer dereference when trying to update the state. Handle this by querying the kernel for the current connector state only once per connector, updating the list of connectors and their corresponding state at the same time. Fixes the following crash: #0 meta_kms_connector_read_state at ../src/backends/native/meta-kms-connector.c:684 #1 meta_kms_connector_update_state at ../src/backends/native/meta-kms-connector.c:767 #2 meta_kms_impl_device_update_states at ../src/backends/native/meta-kms-impl-device.c:916 #3 meta_kms_device_update_states_in_impl at ../src/backends/native/meta-kms-device.c:267 #4 meta_kms_update_states_in_impl at ../src/backends/native/meta-kms.c:604 #5 update_states_in_impl at ../src/backends/native/meta-kms.c:620 #6 meta_kms_run_impl_task_sync at ../src/backends/native/meta-kms.c:435 #7 meta_kms_update_states_sync at ../src/backends/native/meta-kms.c:641 #8 handle_hotplug_event at ../src/backends/native/meta-kms.c:651 #9 on_udev_hotplug at ../src/backends/native/meta-kms.c:668 Related: https://bugzilla.redhat.com/show_bug.cgi?id=2131269 Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2709>
2022-11-23 23:08:33 +01:00
drmModeRes *drm_resources,
drmModeConnector *drm_connector)
{
MetaKmsImplDevice *impl_device;
MetaKmsResourceChanges changes;
impl_device = meta_kms_device_get_impl_device (connector->device);
changes = meta_kms_connector_read_state (connector, impl_device,
drm_connector,
drm_resources);
return changes;
}
void
meta_kms_connector_disable (MetaKmsConnector *connector)
{
MetaKmsConnectorState *current_state;
current_state = connector->current_state;
if (!current_state)
return;
current_state->current_crtc_id = 0;
}
MetaKmsResourceChanges
meta_kms_connector_predict_state (MetaKmsConnector *connector,
MetaKmsUpdate *update)
{
MetaKmsImplDevice *impl_device;
MetaKmsConnectorState *current_state;
GList *mode_sets;
GList *l;
MetaKmsResourceChanges changes = META_KMS_RESOURCE_CHANGE_NONE;
current_state = connector->current_state;
if (!current_state)
return META_KMS_RESOURCE_CHANGE_NONE;
mode_sets = meta_kms_update_get_mode_sets (update);
for (l = mode_sets; l; l = l->next)
{
MetaKmsModeSet *mode_set = l->data;
MetaKmsCrtc *crtc = mode_set->crtc;
if (current_state->current_crtc_id == meta_kms_crtc_get_id (crtc))
{
if (g_list_find (mode_set->connectors, connector))
break;
else
current_state->current_crtc_id = 0;
}
else
{
if (g_list_find (mode_set->connectors, connector))
{
current_state->current_crtc_id = meta_kms_crtc_get_id (crtc);
break;
}
}
}
if (has_privacy_screen_software_toggle (connector))
{
GList *connector_updates;
connector_updates = meta_kms_update_get_connector_updates (update);
for (l = connector_updates; l; l = l->next)
{
MetaKmsConnectorUpdate *connector_update = l->data;
if (connector_update->connector != connector)
continue;
if (connector_update->privacy_screen.has_update &&
!(current_state->privacy_screen_state &
META_PRIVACY_SCREEN_LOCKED))
{
if (connector_update->privacy_screen.is_enabled)
{
if (current_state->privacy_screen_state !=
META_PRIVACY_SCREEN_ENABLED)
changes |= META_KMS_RESOURCE_CHANGE_PRIVACY_SCREEN;
current_state->privacy_screen_state =
META_PRIVACY_SCREEN_ENABLED;
}
else
{
if (current_state->privacy_screen_state !=
META_PRIVACY_SCREEN_DISABLED)
changes |= META_KMS_RESOURCE_CHANGE_PRIVACY_SCREEN;
current_state->privacy_screen_state =
META_PRIVACY_SCREEN_DISABLED;
}
}
}
}
impl_device = meta_kms_device_get_impl_device (connector->device);
sync_fd_held (connector, impl_device);
return changes;
}
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 22:36:41 +02:00
static void
init_properties (MetaKmsConnector *connector,
MetaKmsImplDevice *impl_device,
drmModeConnector *drm_connector)
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 22:36:41 +02:00
{
MetaKmsConnectorPropTable *prop_table = &connector->prop_table;
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 22:36:41 +02:00
*prop_table = (MetaKmsConnectorPropTable) {
.props = {
[META_KMS_CONNECTOR_PROP_CRTC_ID] =
{
.name = "CRTC_ID",
.type = DRM_MODE_PROP_OBJECT,
},
[META_KMS_CONNECTOR_PROP_DPMS] =
{
.name = "DPMS",
.type = DRM_MODE_PROP_ENUM,
.enum_values = prop_table->dpms_enum,
.num_enum_values = META_KMS_CONNECTOR_DPMS_N_PROPS,
},
[META_KMS_CONNECTOR_PROP_UNDERSCAN] =
{
.name = "underscan",
.type = DRM_MODE_PROP_ENUM,
.enum_values = prop_table->underscan_enum,
.num_enum_values = META_KMS_CONNECTOR_UNDERSCAN_N_PROPS,
.default_value = META_KMS_CONNECTOR_UNDERSCAN_UNKNOWN,
},
[META_KMS_CONNECTOR_PROP_UNDERSCAN_HBORDER] =
{
.name = "underscan hborder",
.type = DRM_MODE_PROP_RANGE,
},
[META_KMS_CONNECTOR_PROP_UNDERSCAN_VBORDER] =
{
.name = "underscan vborder",
.type = DRM_MODE_PROP_RANGE,
},
[META_KMS_CONNECTOR_PROP_PRIVACY_SCREEN_SW_STATE] =
{
.name = "privacy-screen sw-state",
.type = DRM_MODE_PROP_ENUM,
.enum_values = prop_table->privacy_screen_sw_enum,
.num_enum_values = META_KMS_CONNECTOR_PRIVACY_SCREEN_N_PROPS,
.default_value = META_KMS_CONNECTOR_PRIVACY_SCREEN_UNKNOWN,
},
[META_KMS_CONNECTOR_PROP_PRIVACY_SCREEN_HW_STATE] =
{
.name = "privacy-screen hw-state",
.type = DRM_MODE_PROP_ENUM,
.enum_values = prop_table->privacy_screen_hw_enum,
.num_enum_values = META_KMS_CONNECTOR_PRIVACY_SCREEN_N_PROPS,
.default_value = META_KMS_CONNECTOR_PRIVACY_SCREEN_UNKNOWN,
},
[META_KMS_CONNECTOR_PROP_EDID] =
{
.name = "EDID",
.type = DRM_MODE_PROP_BLOB,
},
[META_KMS_CONNECTOR_PROP_TILE] =
{
.name = "TILE",
.type = DRM_MODE_PROP_BLOB,
},
[META_KMS_CONNECTOR_PROP_SUGGESTED_X] =
{
.name = "suggested X",
.type = DRM_MODE_PROP_RANGE,
},
[META_KMS_CONNECTOR_PROP_SUGGESTED_Y] =
{
.name = "suggested Y",
.type = DRM_MODE_PROP_RANGE,
},
[META_KMS_CONNECTOR_PROP_HOTPLUG_MODE_UPDATE] =
{
.name = "hotplug_mode_update",
.type = DRM_MODE_PROP_RANGE,
},
[META_KMS_CONNECTOR_PROP_SCALING_MODE] =
{
.name = "scaling mode",
.type = DRM_MODE_PROP_ENUM,
.enum_values = prop_table->scaling_mode_enum,
.num_enum_values = META_KMS_CONNECTOR_SCALING_MODE_N_PROPS,
.default_value = META_KMS_CONNECTOR_SCALING_MODE_UNKNOWN,
},
[META_KMS_CONNECTOR_PROP_PANEL_ORIENTATION] =
{
.name = "panel orientation",
.type = DRM_MODE_PROP_ENUM,
.enum_values = prop_table->panel_orientation_enum,
.num_enum_values = META_KMS_CONNECTOR_PANEL_ORIENTATION_N_PROPS,
.default_value = META_KMS_CONNECTOR_PANEL_ORIENTATION_UNKNOWN,
},
[META_KMS_CONNECTOR_PROP_NON_DESKTOP] =
{
.name = "non-desktop",
.type = DRM_MODE_PROP_RANGE,
},
[META_KMS_CONNECTOR_PROP_MAX_BPC] =
{
.name = "max bpc",
.type = DRM_MODE_PROP_RANGE,
},
},
.dpms_enum = {
[META_KMS_CONNECTOR_DPMS_ON] =
{
.name = "On",
},
[META_KMS_CONNECTOR_DPMS_STANDBY] =
{
.name = "Standby",
},
[META_KMS_CONNECTOR_DPMS_SUSPEND] =
{
.name = "Suspend",
},
[META_KMS_CONNECTOR_DPMS_OFF] =
{
.name = "Off",
},
},
.underscan_enum = {
[META_KMS_CONNECTOR_UNDERSCAN_OFF] =
{
.name = "off",
},
[META_KMS_CONNECTOR_UNDERSCAN_ON] =
{
.name = "on",
},
[META_KMS_CONNECTOR_UNDERSCAN_AUTO] =
{
.name = "auto",
},
},
.privacy_screen_sw_enum = {
[META_KMS_CONNECTOR_PRIVACY_SCREEN_ENABLED] =
{
.name = "Enabled",
},
[META_KMS_CONNECTOR_PRIVACY_SCREEN_DISABLED] =
{
.name = "Disabled",
},
[META_KMS_CONNECTOR_PRIVACY_SCREEN_ENABLED_LOCKED] =
{
.name = "Enabled-locked",
},
[META_KMS_CONNECTOR_PRIVACY_SCREEN_DISABLED_LOCKED] =
{
.name = "Disabled-locked",
},
},
.privacy_screen_hw_enum = {
[META_KMS_CONNECTOR_PRIVACY_SCREEN_ENABLED] =
{
.name = "Enabled",
},
[META_KMS_CONNECTOR_PRIVACY_SCREEN_DISABLED] =
{
.name = "Disabled",
},
[META_KMS_CONNECTOR_PRIVACY_SCREEN_ENABLED_LOCKED] =
{
.name = "Enabled-locked",
},
[META_KMS_CONNECTOR_PRIVACY_SCREEN_DISABLED_LOCKED] =
{
.name = "Disabled-locked",
},
},
.scaling_mode_enum = {
[META_KMS_CONNECTOR_SCALING_MODE_NONE] =
{
.name = "None",
},
[META_KMS_CONNECTOR_SCALING_MODE_FULL] =
{
.name = "Full",
},
[META_KMS_CONNECTOR_SCALING_MODE_CENTER] =
{
.name = "Center",
},
[META_KMS_CONNECTOR_SCALING_MODE_FULL_ASPECT] =
{
.name = "Full aspect",
},
},
.panel_orientation_enum = {
[META_KMS_CONNECTOR_PANEL_ORIENTATION_NORMAL] =
{
.name = "Normal",
},
[META_KMS_CONNECTOR_PANEL_ORIENTATION_UPSIDE_DOWN] =
{
.name = "Upside Down",
},
[META_KMS_CONNECTOR_PANEL_ORIENTATION_LEFT_SIDE_UP] =
{
.name = "Left Side Up",
},
[META_KMS_CONNECTOR_PANEL_ORIENTATION_RIGHT_SIDE_UP] =
{
.name = "Right Side Up",
},
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 22:36:41 +02:00
}
};
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 22:36:41 +02:00
}
static char *
make_connector_name (drmModeConnector *drm_connector)
{
static const char * const connector_type_names[] = {
"None",
"VGA",
"DVI-I",
"DVI-D",
"DVI-A",
"Composite",
"SVIDEO",
"LVDS",
"Component",
"DIN",
"DP",
"HDMI",
"HDMI-B",
"TV",
"eDP",
"Virtual",
"DSI",
};
if (drm_connector->connector_type < G_N_ELEMENTS (connector_type_names))
return g_strdup_printf ("%s-%d",
connector_type_names[drm_connector->connector_type],
drm_connector->connector_type_id);
else
return g_strdup_printf ("Unknown%d-%d",
drm_connector->connector_type,
drm_connector->connector_type_id);
}
gboolean
meta_kms_connector_is_same_as (MetaKmsConnector *connector,
drmModeConnector *drm_connector)
{
return (connector->id == drm_connector->connector_id &&
connector->type == drm_connector->connector_type &&
connector->type_id == drm_connector->connector_type_id);
}
MetaKmsConnector *
meta_kms_connector_new (MetaKmsImplDevice *impl_device,
drmModeConnector *drm_connector,
drmModeRes *drm_resources)
{
MetaKmsConnector *connector;
g_assert (drm_connector);
connector = g_object_new (META_TYPE_KMS_CONNECTOR, NULL);
connector->device = meta_kms_impl_device_get_device (impl_device);
connector->id = drm_connector->connector_id;
connector->type = drm_connector->connector_type;
connector->type_id = drm_connector->connector_type_id;
connector->name = make_connector_name (drm_connector);
init_properties (connector, impl_device, drm_connector);
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 22:36:41 +02:00
meta_kms_connector_read_state (connector, impl_device,
drm_connector,
drm_resources);
return connector;
}
static void
meta_kms_connector_finalize (GObject *object)
{
MetaKmsConnector *connector = META_KMS_CONNECTOR (object);
if (connector->fd_held)
{
MetaKmsImplDevice *impl_device;
impl_device = meta_kms_device_get_impl_device (connector->device);
meta_kms_impl_device_unhold_fd (impl_device);
}
g_clear_pointer (&connector->current_state, meta_kms_connector_state_free);
g_free (connector->name);
G_OBJECT_CLASS (meta_kms_connector_parent_class)->finalize (object);
}
static void
meta_kms_connector_init (MetaKmsConnector *connector)
{
}
static void
meta_kms_connector_class_init (MetaKmsConnectorClass *klass)
{
GObjectClass *object_class = G_OBJECT_CLASS (klass);
object_class->finalize = meta_kms_connector_finalize;
}