mutter/cogl/cogl-pipeline-layer-state.h

534 lines
19 KiB
C
Raw Normal View History

/*
* Cogl
*
* An object oriented GL/GLES Abstraction/Utility Layer
*
* Copyright (C) 2007,2008,2009 Intel Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*
*/
#if !defined(__COGL_H_INSIDE__) && !defined(CLUTTER_COMPILATION)
#error "Only <cogl/cogl.h> can be included directly."
#endif
#ifndef __COGL_PIPELINE_LAYER_STATE_H__
#define __COGL_PIPELINE_LAYER_STATE_H__
#include <cogl/cogl-pipeline.h>
#include <cogl/cogl-color.h>
#include <cogl/cogl-matrix.h>
#include <cogl/cogl-texture.h>
#include <glib.h>
G_BEGIN_DECLS
#ifdef COGL_ENABLE_EXPERIMENTAL_API
/**
* CoglPipelineFilter:
* @COGL_PIPELINE_FILTER_NEAREST: Measuring in manhatten distance from the,
* current pixel center, use the nearest texture texel
* @COGL_PIPELINE_FILTER_LINEAR: Use the weighted average of the 4 texels
* nearest the current pixel center
* @COGL_PIPELINE_FILTER_NEAREST_MIPMAP_NEAREST: Select the mimap level whose
* texel size most closely matches the current pixel, and use the
* %COGL_PIPELINE_FILTER_NEAREST criterion
* @COGL_PIPELINE_FILTER_LINEAR_MIPMAP_NEAREST: Select the mimap level whose
* texel size most closely matches the current pixel, and use the
* %COGL_PIPELINE_FILTER_LINEAR criterion
* @COGL_PIPELINE_FILTER_NEAREST_MIPMAP_LINEAR: Select the two mimap levels
* whose texel size most closely matches the current pixel, use
* the %COGL_PIPELINE_FILTER_NEAREST criterion on each one and take
* their weighted average
* @COGL_PIPELINE_FILTER_LINEAR_MIPMAP_LINEAR: Select the two mimap levels
* whose texel size most closely matches the current pixel, use
* the %COGL_PIPELINE_FILTER_LINEAR criterion on each one and take
* their weighted average
*
* Texture filtering is used whenever the current pixel maps either to more
* than one texture element (texel) or less than one. These filter enums
* correspond to different strategies used to come up with a pixel color, by
* possibly referring to multiple neighbouring texels and taking a weighted
* average or simply using the nearest texel.
*/
typedef enum {
COGL_PIPELINE_FILTER_NEAREST = 0x2600,
COGL_PIPELINE_FILTER_LINEAR = 0x2601,
COGL_PIPELINE_FILTER_NEAREST_MIPMAP_NEAREST = 0x2700,
COGL_PIPELINE_FILTER_LINEAR_MIPMAP_NEAREST = 0x2701,
COGL_PIPELINE_FILTER_NEAREST_MIPMAP_LINEAR = 0x2702,
COGL_PIPELINE_FILTER_LINEAR_MIPMAP_LINEAR = 0x2703
} CoglPipelineFilter;
/* NB: these values come from the equivalents in gl.h */
/**
* CoglPipelineWrapMode:
* @COGL_PIPELINE_WRAP_MODE_REPEAT: The texture will be repeated. This
* is useful for example to draw a tiled background.
* @COGL_PIPELINE_WRAP_MODE_CLAMP_TO_EDGE: The coordinates outside the
* range 01 will sample copies of the edge pixels of the
* texture. This is useful to avoid artifacts if only one copy of
* the texture is being rendered.
* @COGL_PIPELINE_WRAP_MODE_AUTOMATIC: Cogl will try to automatically
* decide which of the above two to use. For cogl_rectangle(), it
* will use repeat mode if any of the texture coordinates are
* outside the range 01, otherwise it will use clamp to edge. For
* cogl_polygon() it will always use repeat mode. For
* cogl_vertex_buffer_draw() it will use repeat mode except for
* layers that have point sprite coordinate generation enabled. This
* is the default value.
*
* The wrap mode specifies what happens when texture coordinates
* outside the range 01 are used. Note that if the filter mode is
* anything but %COGL_PIPELINE_FILTER_NEAREST then texels outside the
* range 01 might be used even when the coordinate is exactly 0 or 1
* because OpenGL will try to sample neighbouring pixels. For example
* if you are trying to render the full texture then you may get
* artifacts around the edges when the pixels from the other side are
* merged in if the wrap mode is set to repeat.
*
* Since: 2.0
*/
/* GL_ALWAYS is just used here as a value that is known not to clash
* with any valid GL wrap modes
*
* XXX: keep the values in sync with the CoglPipelineWrapModeInternal
* enum so no conversion is actually needed.
*/
typedef enum {
COGL_PIPELINE_WRAP_MODE_REPEAT = 0x2901,
COGL_PIPELINE_WRAP_MODE_MIRRORED_REPEAT = 0x8370,
COGL_PIPELINE_WRAP_MODE_CLAMP_TO_EDGE = 0x812F,
COGL_PIPELINE_WRAP_MODE_AUTOMATIC = 0x0207 /* GL_ALWAYS */
} CoglPipelineWrapMode;
/* NB: these values come from the equivalents in gl.h */
/**
* cogl_pipeline_set_layer:
* @pipeline: A #CoglPipeline object
* @layer_index: the index of the layer
Add a strong CoglTexture type to replace CoglHandle As part of the on going, incremental effort to purge the non type safe CoglHandle type from the Cogl API this patch tackles most of the CoglHandle uses relating to textures. We'd postponed making this change for quite a while because we wanted to have a clearer understanding of how we wanted to evolve the texture APIs towards Cogl 2.0 before exposing type safety here which would be difficult to change later since it would imply breaking APIs. The basic idea that we are steering towards now is that CoglTexture can be considered to be the most primitive interface we have for any object representing a texture. The texture interface would provide roughly these methods: cogl_texture_get_width cogl_texture_get_height cogl_texture_can_repeat cogl_texture_can_mipmap cogl_texture_generate_mipmap; cogl_texture_get_format cogl_texture_set_region cogl_texture_get_region Besides the texture interface we will then start to expose types corresponding to specific texture types: CoglTexture2D, CoglTexture3D, CoglTexture2DSliced, CoglSubTexture, CoglAtlasTexture and CoglTexturePixmapX11. We will then also expose an interface for the high-level texture types we have (such as CoglTexture2DSlice, CoglSubTexture and CoglAtlasTexture) called CoglMetaTexture. CoglMetaTexture is an additional interface that lets you iterate a virtual region of a meta texture and get mappings of primitive textures to sub-regions of that virtual region. Internally we already have this kind of abstraction for dealing with sliced texture, sub-textures and atlas textures in a consistent way, so this will just make that abstraction public. The aim here is to clarify that there is a difference between primitive textures (CoglTexture2D/3D) and some of the other high-level textures, and also enable developers to implement primitives that can support meta textures since they can only be used with the cogl_rectangle API currently. The thing that's not so clean-cut with this are the texture constructors we have currently; such as cogl_texture_new_from_file which no longer make sense when CoglTexture is considered to be an interface. These will basically just become convenient factory functions and it's just a bit unusual that they are within the cogl_texture namespace. It's worth noting here that all the texture type APIs will also have their own type specific constructors so these functions will only be used for the convenience of being able to create a texture without really wanting to know the details of what type of texture you need. Longer term for 2.0 we may come up with replacement names for these factory functions or the other thing we are considering is designing some asynchronous factory functions instead since it's so often detrimental to application performance to be blocked waiting for a texture to be uploaded to the GPU. Reviewed-by: Neil Roberts <neil@linux.intel.com>
2011-08-24 20:30:34 +00:00
* @texture: a #CoglTexture for the layer object
*
* In addition to the standard OpenGL lighting model a Cogl pipeline may have
* one or more layers comprised of textures that can be blended together in
* order, with a number of different texture combine modes. This function
* defines a new texture layer.
*
* The index values of multiple layers do not have to be consecutive; it is
* only their relative order that is important.
*
* <note>In the future, we may define other types of pipeline layers, such
* as purely GLSL based layers.</note>
*
* Since: 2.0
* Stability: unstable
*/
void
cogl_pipeline_set_layer_texture (CoglPipeline *pipeline,
int layer_index,
Add a strong CoglTexture type to replace CoglHandle As part of the on going, incremental effort to purge the non type safe CoglHandle type from the Cogl API this patch tackles most of the CoglHandle uses relating to textures. We'd postponed making this change for quite a while because we wanted to have a clearer understanding of how we wanted to evolve the texture APIs towards Cogl 2.0 before exposing type safety here which would be difficult to change later since it would imply breaking APIs. The basic idea that we are steering towards now is that CoglTexture can be considered to be the most primitive interface we have for any object representing a texture. The texture interface would provide roughly these methods: cogl_texture_get_width cogl_texture_get_height cogl_texture_can_repeat cogl_texture_can_mipmap cogl_texture_generate_mipmap; cogl_texture_get_format cogl_texture_set_region cogl_texture_get_region Besides the texture interface we will then start to expose types corresponding to specific texture types: CoglTexture2D, CoglTexture3D, CoglTexture2DSliced, CoglSubTexture, CoglAtlasTexture and CoglTexturePixmapX11. We will then also expose an interface for the high-level texture types we have (such as CoglTexture2DSlice, CoglSubTexture and CoglAtlasTexture) called CoglMetaTexture. CoglMetaTexture is an additional interface that lets you iterate a virtual region of a meta texture and get mappings of primitive textures to sub-regions of that virtual region. Internally we already have this kind of abstraction for dealing with sliced texture, sub-textures and atlas textures in a consistent way, so this will just make that abstraction public. The aim here is to clarify that there is a difference between primitive textures (CoglTexture2D/3D) and some of the other high-level textures, and also enable developers to implement primitives that can support meta textures since they can only be used with the cogl_rectangle API currently. The thing that's not so clean-cut with this are the texture constructors we have currently; such as cogl_texture_new_from_file which no longer make sense when CoglTexture is considered to be an interface. These will basically just become convenient factory functions and it's just a bit unusual that they are within the cogl_texture namespace. It's worth noting here that all the texture type APIs will also have their own type specific constructors so these functions will only be used for the convenience of being able to create a texture without really wanting to know the details of what type of texture you need. Longer term for 2.0 we may come up with replacement names for these factory functions or the other thing we are considering is designing some asynchronous factory functions instead since it's so often detrimental to application performance to be blocked waiting for a texture to be uploaded to the GPU. Reviewed-by: Neil Roberts <neil@linux.intel.com>
2011-08-24 20:30:34 +00:00
CoglTexture *texture);
/**
* cogl_pipeline_get_layer_texture:
* @pipeline: A #CoglPipeline object
* @layer_index: the index of the layer
*
* Return value: the texture that was set for the given layer of the
* pipeline or %NULL if no texture was set.
* Stability: unstable
* Since: 1.10
*/
CoglTexture *
cogl_pipeline_get_layer_texture (CoglPipeline *pipeline,
int layer_index);
/**
* cogl_pipeline_remove_layer:
* @pipeline: A #CoglPipeline object
* @layer_index: Specifies the layer you want to remove
*
* This function removes a layer from your pipeline
* Since: 1.10
* Stability: unstable
*/
void
cogl_pipeline_remove_layer (CoglPipeline *pipeline,
int layer_index);
/**
* cogl_pipeline_set_layer_combine:
* @pipeline: A #CoglPipeline object
* @layer_index: Specifies the layer you want define a combine function for
* @blend_string: A <link linkend="cogl-Blend-Strings">Cogl blend string</link>
* describing the desired texture combine function.
* @error: A #GError that may report parse errors or lack of GPU/driver
* support. May be %NULL, in which case a warning will be printed out if an
* error is encountered.
*
* If not already familiar; you can refer
* <link linkend="cogl-Blend-Strings">here</link> for an overview of what blend
* strings are and there syntax.
*
* These are all the functions available for texture combining:
* <itemizedlist>
* <listitem>REPLACE(arg0) = arg0</listitem>
* <listitem>MODULATE(arg0, arg1) = arg0 x arg1</listitem>
* <listitem>ADD(arg0, arg1) = arg0 + arg1</listitem>
* <listitem>ADD_SIGNED(arg0, arg1) = arg0 + arg1 - 0.5</listitem>
* <listitem>INTERPOLATE(arg0, arg1, arg2) = arg0 x arg2 + arg1 x (1 - arg2)</listitem>
* <listitem>SUBTRACT(arg0, arg1) = arg0 - arg1</listitem>
* <listitem>
* <programlisting>
* DOT3_RGB(arg0, arg1) = 4 x ((arg0[R] - 0.5)) * (arg1[R] - 0.5) +
* (arg0[G] - 0.5)) * (arg1[G] - 0.5) +
* (arg0[B] - 0.5)) * (arg1[B] - 0.5))
* </programlisting>
* </listitem>
* <listitem>
* <programlisting>
* DOT3_RGBA(arg0, arg1) = 4 x ((arg0[R] - 0.5)) * (arg1[R] - 0.5) +
* (arg0[G] - 0.5)) * (arg1[G] - 0.5) +
* (arg0[B] - 0.5)) * (arg1[B] - 0.5))
* </programlisting>
* </listitem>
* </itemizedlist>
*
* Refer to the
* <link linkend="cogl-Blend-String-syntax">color-source syntax</link> for
* describing the arguments. The valid source names for texture combining
* are:
* <variablelist>
* <varlistentry>
* <term>TEXTURE</term>
* <listitem>Use the color from the current texture layer</listitem>
* </varlistentry>
* <varlistentry>
* <term>TEXTURE_0, TEXTURE_1, etc</term>
* <listitem>Use the color from the specified texture layer</listitem>
* </varlistentry>
* <varlistentry>
* <term>CONSTANT</term>
* <listitem>Use the color from the constant given with
* cogl_pipeline_set_layer_constant()</listitem>
* </varlistentry>
* <varlistentry>
* <term>PRIMARY</term>
* <listitem>Use the color of the pipeline as set with
* cogl_pipeline_set_color()</listitem>
* </varlistentry>
* <varlistentry>
* <term>PREVIOUS</term>
* <listitem>Either use the texture color from the previous layer, or
* if this is layer 0, use the color of the pipeline as set with
* cogl_pipeline_set_color()</listitem>
* </varlistentry>
* </variablelist>
*
* <refsect2 id="cogl-Layer-Combine-Examples">
* <title>Layer Combine Examples</title>
* <para>This is effectively what the default blending is:</para>
* <informalexample><programlisting>
* RGBA = MODULATE (PREVIOUS, TEXTURE)
* </programlisting></informalexample>
* <para>This could be used to cross-fade between two images, using
* the alpha component of a constant as the interpolator. The constant
* color is given by calling cogl_pipeline_set_layer_constant.</para>
* <informalexample><programlisting>
* RGBA = INTERPOLATE (PREVIOUS, TEXTURE, CONSTANT[A])
* </programlisting></informalexample>
* </refsect2>
*
* <note>You can't give a multiplication factor for arguments as you can
* with blending.</note>
*
* Return value: %TRUE if the blend string was successfully parsed, and the
* described texture combining is supported by the underlying driver and
* or hardware. On failure, %FALSE is returned and @error is set
*
* Since: 2.0
* Stability: unstable
*/
gboolean
cogl_pipeline_set_layer_combine (CoglPipeline *pipeline,
int layer_index,
const char *blend_string,
GError **error);
/**
* cogl_pipeline_set_layer_combine_constant:
* @pipeline: A #CoglPipeline object
* @layer_index: Specifies the layer you want to specify a constant used
* for texture combining
* @constant: The constant color you want
*
* When you are using the 'CONSTANT' color source in a layer combine
* description then you can use this function to define its value.
*
* Since: 2.0
* Stability: unstable
*/
void
cogl_pipeline_set_layer_combine_constant (CoglPipeline *pipeline,
int layer_index,
const CoglColor *constant);
/**
* cogl_pipeline_set_layer_matrix:
* @pipeline: A #CoglPipeline object
* @layer_index: the index for the layer inside @pipeline
* @matrix: the transformation matrix for the layer
*
* This function lets you set a matrix that can be used to e.g. translate
* and rotate a single layer of a pipeline used to fill your geometry.
*
* Since: 1.10
* Stability: unstable
*/
void
cogl_pipeline_set_layer_matrix (CoglPipeline *pipeline,
int layer_index,
const CoglMatrix *matrix);
/**
* cogl_pipeline_get_n_layers:
* @pipeline: A #CoglPipeline object
*
* Retrieves the number of layers defined for the given @pipeline
*
* Return value: the number of layers
*
* Since: 2.0
* Stability: unstable
*/
int
cogl_pipeline_get_n_layers (CoglPipeline *pipeline);
/**
* cogl_pipeline_set_layer_filters:
* @pipeline: A #CoglPipeline object
* @layer_index: the layer number to change.
* @min_filter: the filter used when scaling a texture down.
* @mag_filter: the filter used when magnifying a texture.
*
* Changes the decimation and interpolation filters used when a texture is
* drawn at other scales than 100%.
*
* Since: 1.10
* Stability: unstable
*/
void
cogl_pipeline_set_layer_filters (CoglPipeline *pipeline,
int layer_index,
CoglPipelineFilter min_filter,
CoglPipelineFilter mag_filter);
/**
* cogl_pipeline_set_layer_point_sprite_coords_enabled:
* @pipeline: a #CoglHandle to a pipeline.
* @layer_index: the layer number to change.
* @enable: whether to enable point sprite coord generation.
* @error: A return location for a GError, or NULL to ignore errors.
*
* When rendering points, if @enable is %TRUE then the texture
* coordinates for this layer will be replaced with coordinates that
* vary from 0.0 to 1.0 across the primitive. The top left of the
* point will have the coordinates 0.0,0.0 and the bottom right will
* have 1.0,1.0. If @enable is %FALSE then the coordinates will be
* fixed for the entire point.
*
* This function will only work if %COGL_FEATURE_POINT_SPRITE is
* available. If the feature is not available then the function will
* return %FALSE and set @error.
*
* Return value: %TRUE if the function succeeds, %FALSE otherwise.
* Since: 2.0
* Stability: unstable
*/
gboolean
cogl_pipeline_set_layer_point_sprite_coords_enabled (CoglPipeline *pipeline,
int layer_index,
gboolean enable,
GError **error);
/**
* cogl_pipeline_get_layer_point_sprite_coords_enabled:
* @pipeline: a #CoglHandle to a pipeline.
* @layer_index: the layer number to check.
*
* Gets whether point sprite coordinate generation is enabled for this
* texture layer.
*
* Return value: whether the texture coordinates will be replaced with
* point sprite coordinates.
*
* Since: 2.0
* Stability: unstable
*/
gboolean
cogl_pipeline_get_layer_point_sprite_coords_enabled (CoglPipeline *pipeline,
int layer_index);
/**
* cogl_pipeline_get_layer_wrap_mode_s:
* @pipeline: A #CoglPipeline object
* @layer_index: the layer number to change.
*
* Returns the wrap mode for the 's' coordinate of texture lookups on this
* layer.
*
* Return value: the wrap mode for the 's' coordinate of texture lookups on
* this layer.
*
* Since: 1.6
* Stability: unstable
*/
CoglPipelineWrapMode
cogl_pipeline_get_layer_wrap_mode_s (CoglPipeline *pipeline,
int layer_index);
/**
* cogl_pipeline_set_layer_wrap_mode_s:
* @pipeline: A #CoglPipeline object
* @layer_index: the layer number to change.
* @mode: the new wrap mode
*
* Sets the wrap mode for the 's' coordinate of texture lookups on this layer.
*
* Since: 2.0
* Stability: unstable
*/
void
cogl_pipeline_set_layer_wrap_mode_s (CoglPipeline *pipeline,
int layer_index,
CoglPipelineWrapMode mode);
/**
* cogl_pipeline_get_layer_wrap_mode_t:
* @pipeline: A #CoglPipeline object
* @layer_index: the layer number to change.
*
* Returns the wrap mode for the 't' coordinate of texture lookups on this
* layer.
*
* Return value: the wrap mode for the 't' coordinate of texture lookups on
* this layer.
*
* Since: 1.6
* Stability: unstable
*/
CoglPipelineWrapMode
cogl_pipeline_get_layer_wrap_mode_t (CoglPipeline *pipeline,
int layer_index);
/**
* cogl_pipeline_set_layer_wrap_mode_t:
* @pipeline: A #CoglPipeline object
* @layer_index: the layer number to change.
* @mode: the new wrap mode
*
* Sets the wrap mode for the 't' coordinate of texture lookups on this layer.
*
* Since: 2.0
* Stability: unstable
*/
void
cogl_pipeline_set_layer_wrap_mode_t (CoglPipeline *pipeline,
int layer_index,
CoglPipelineWrapMode mode);
/**
* cogl_pipeline_get_layer_wrap_mode_p:
* @pipeline: A #CoglPipeline object
* @layer_index: the layer number to change.
*
* Returns the wrap mode for the 'p' coordinate of texture lookups on this
* layer.
*
* Return value: the wrap mode for the 'p' coordinate of texture lookups on
* this layer.
*
* Since: 1.6
* Stability: unstable
*/
CoglPipelineWrapMode
cogl_pipeline_get_layer_wrap_mode_p (CoglPipeline *pipeline,
int layer_index);
/**
* cogl_pipeline_set_layer_wrap_mode_p:
* @pipeline: A #CoglPipeline object
* @layer_index: the layer number to change.
* @mode: the new wrap mode
*
* Sets the wrap mode for the 'p' coordinate of texture lookups on
* this layer. 'p' is the third coordinate.
*
* Since: 2.0
* Stability: unstable
*/
void
cogl_pipeline_set_layer_wrap_mode_p (CoglPipeline *pipeline,
int layer_index,
CoglPipelineWrapMode mode);
/**
* cogl_pipeline_set_layer_wrap_mode:
* @pipeline: A #CoglPipeline object
* @layer_index: the layer number to change.
* @mode: the new wrap mode
*
* Sets the wrap mode for all three coordinates of texture lookups on
* this layer. This is equivalent to calling
* cogl_pipeline_set_layer_wrap_mode_s(),
* cogl_pipeline_set_layer_wrap_mode_t() and
* cogl_pipeline_set_layer_wrap_mode_p() separately.
*
* Since: 2.0
* Stability: unstable
*/
void
cogl_pipeline_set_layer_wrap_mode (CoglPipeline *pipeline,
int layer_index,
CoglPipelineWrapMode mode);
/**
* cogl_pipeline_add_layer_snippet:
* @pipeline: A #CoglPipeline
* @layer: The layer to hook the snippet to
* @snippet: A #CoglSnippet
*
* Adds a shader snippet that will hook on to the given layer of the
* pipeline. The exact part of the pipeline that the snippet wraps
* around depends on the hook that is given to
* cogl_snippet_new(). Note that some hooks can't be used with a layer
* and need to be added with cogl_pipeline_add_snippet() instead.
*
* Since: 1.10
* Stability: Unstable
*/
void
cogl_pipeline_add_layer_snippet (CoglPipeline *pipeline,
int layer,
CoglSnippet *snippet);
#endif /* COGL_ENABLE_EXPERIMENTAL_API */
G_END_DECLS
#endif /* __COGL_PIPELINE_LAYER_STATE_H__ */