citadel/poky/documentation/sdk-manual/sdk-working-projects.xml

284 lines
14 KiB
XML

<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd"
[<!ENTITY % poky SYSTEM "../poky.ent"> %poky; ] >
<chapter id='sdk-working-projects'>
<title>Using the SDK Toolchain Directly</title>
<para>
You can use the SDK toolchain directly with Makefile,
Autotools, and <trademark class='trade'>Eclipse</trademark> based
projects.
This chapter covers the first two, while the
"<link linkend='sdk-eclipse-project'>Developing Applications Using <trademark class='trade'>Eclipse</trademark></link>"
Chapter covers the latter.
</para>
<section id='autotools-based-projects'>
<title>Autotools-Based Projects</title>
<para>
Once you have a suitable cross-toolchain installed, it is very easy
to develop a project outside of the OpenEmbedded build system.
This section presents a simple "Helloworld" example that shows how
to set up, compile, and run the project.
</para>
<section id='creating-and-running-a-project-based-on-gnu-autotools'>
<title>Creating and Running a Project Based on GNU Autotools</title>
<para>
Follow these steps to create a simple Autotools-based project:
<orderedlist>
<listitem><para>
<emphasis>Create your directory:</emphasis>
Create a clean directory for your project and then make
that directory your working location:
<literallayout class='monospaced'>
$ mkdir $HOME/helloworld
$ cd $HOME/helloworld
</literallayout>
</para></listitem>
<listitem><para>
<emphasis>Populate the directory:</emphasis>
Create <filename>hello.c</filename>,
<filename>Makefile.am</filename>,
and <filename>configure.ac</filename> files as follows:
<itemizedlist>
<listitem><para>
For <filename>hello.c</filename>, include
these lines:
<literallayout class='monospaced'>
#include &lt;stdio.h&gt;
main()
{
printf("Hello World!\n");
}
</literallayout>
</para></listitem>
<listitem><para>
For <filename>Makefile.am</filename>,
include these lines:
<literallayout class='monospaced'>
bin_PROGRAMS = hello
hello_SOURCES = hello.c
</literallayout>
</para></listitem>
<listitem><para>
For <filename>configure.in</filename>,
include these lines:
<literallayout class='monospaced'>
AC_INIT(hello,0.1)
AM_INIT_AUTOMAKE([foreign])
AC_PROG_CC
AC_PROG_INSTALL
AC_OUTPUT(Makefile)
</literallayout>
</para></listitem>
</itemizedlist>
</para></listitem>
<listitem><para>
<emphasis>Source the cross-toolchain
environment setup file:</emphasis>
As described earlier in the manual, installing the
cross-toolchain creates a cross-toolchain
environment setup script in the directory that the SDK
was installed.
Before you can use the tools to develop your project,
you must source this setup script.
The script begins with the string "environment-setup"
and contains the machine architecture, which is
followed by the string "poky-linux".
Here is an example that sources a script from the
default SDK installation directory that uses the
32-bit Intel x86 Architecture and the
&DISTRO_NAME; Yocto Project release:
<literallayout class='monospaced'>
$ source /opt/poky/&DISTRO;/environment-setup-i586-poky-linux
</literallayout>
</para></listitem>
<listitem><para>
<emphasis>Generate the local aclocal.m4
files and create the configure script:</emphasis>
The following GNU Autotools generate the local
<filename>aclocal.m4</filename> files and create the
configure script:
<literallayout class='monospaced'>
$ aclocal
$ autoconf
</literallayout>
</para></listitem>
<listitem><para>
<emphasis>Generate files needed by GNU coding
standards:</emphasis>
GNU coding standards require certain files in order
for the project to be compliant.
This command creates those files:
<literallayout class='monospaced'>
$ touch NEWS README AUTHORS ChangeLog
</literallayout>
</para></listitem>
<listitem><para>
<emphasis>Generate the configure file:</emphasis>
This command generates the
<filename>configure</filename>:
<literallayout class='monospaced'>
$ automake -a
</literallayout>
</para></listitem>
<listitem><para>
<emphasis>Cross-compile the project:</emphasis>
This command compiles the project using the
cross-compiler.
The
<ulink url='&YOCTO_DOCS_REF_URL;#var-CONFIGURE_FLAGS'><filename>CONFIGURE_FLAGS</filename></ulink>
environment variable provides the minimal arguments for
GNU configure:
<literallayout class='monospaced'>
$ ./configure ${CONFIGURE_FLAGS}
</literallayout>
</para></listitem>
<listitem><para>
<emphasis>Make and install the project:</emphasis>
These two commands generate and install the project
into the destination directory:
<literallayout class='monospaced'>
$ make
$ make install DESTDIR=./tmp
</literallayout>
</para></listitem>
<listitem><para>
<emphasis>Verify the installation:</emphasis>
This command is a simple way to verify the installation
of your project.
Running the command prints the architecture on which
the binary file can run.
This architecture should be the same architecture that
the installed cross-toolchain supports.
<literallayout class='monospaced'>
$ file ./tmp/usr/local/bin/hello
</literallayout>
</para></listitem>
<listitem><para>
<emphasis>Execute your project:</emphasis>
To execute the project in the shell, simply enter
the name.
You could also copy the binary to the actual target
hardware and run the project there as well:
<literallayout class='monospaced'>
$ ./hello
</literallayout>
As expected, the project displays the "Hello World!"
message.
</para></listitem>
</orderedlist>
</para>
</section>
<section id='passing-host-options'>
<title>Passing Host Options</title>
<para>
For an Autotools-based project, you can use the cross-toolchain
by just passing the appropriate host option to
<filename>configure.sh</filename>.
The host option you use is derived from the name of the
environment setup script found in the directory in which you
installed the cross-toolchain.
For example, the host option for an ARM-based target that uses
the GNU EABI is <filename>armv5te-poky-linux-gnueabi</filename>.
You will notice that the name of the script is
<filename>environment-setup-armv5te-poky-linux-gnueabi</filename>.
Thus, the following command works to update your project and
rebuild it using the appropriate cross-toolchain tools:
<literallayout class='monospaced'>
$ ./configure --host=armv5te-poky-linux-gnueabi \
--with-libtool-sysroot=<replaceable>sysroot_dir</replaceable>
</literallayout>
<note>
If the <filename>configure</filename> script results in
problems recognizing the
<filename>--with-libtool-sysroot=</filename><replaceable>sysroot-dir</replaceable>
option, regenerate the script to enable the support by
doing the following and then run the script again:
<literallayout class='monospaced'>
$ libtoolize --automake
$ aclocal -I ${OECORE_TARGET_SYSROOT}/usr/share/aclocal [-I <replaceable>dir_containing_your_project-specific_m4_macros</replaceable>]
$ autoconf
$ autoheader
$ automake -a
</literallayout>
</note>
</para>
</section>
</section>
<section id='makefile-based-projects'>
<title>Makefile-Based Projects</title>
<para>
For Makefile-based projects, the cross-toolchain environment
variables established by running the cross-toolchain environment
setup script are subject to general <filename>make</filename>
rules.
</para>
<para>
To illustrate this, consider the following four cross-toolchain
environment variables:
<literallayout class='monospaced'>
<ulink url='&YOCTO_DOCS_REF_URL;#var-CC'>CC</ulink>=i586-poky-linux-gcc -m32 -march=i586 --sysroot=/opt/poky/&DISTRO;/sysroots/i586-poky-linux
<ulink url='&YOCTO_DOCS_REF_URL;#var-LD'>LD</ulink>=i586-poky-linux-ld --sysroot=/opt/poky/&DISTRO;/sysroots/i586-poky-linux
<ulink url='&YOCTO_DOCS_REF_URL;#var-CFLAGS'>CFLAGS</ulink>=-O2 -pipe -g -feliminate-unused-debug-types
<ulink url='&YOCTO_DOCS_REF_URL;#var-CXXFLAGS'>CXXFLAGS</ulink>=-O2 -pipe -g -feliminate-unused-debug-types
</literallayout>
Now, consider the following three cases:
<itemizedlist>
<listitem><para>
<emphasis>Case 1 - No Variables Set in the
<filename>Makefile</filename>:</emphasis>
Because these variables are not specifically set in the
<filename>Makefile</filename>, the variables retain their
values based on the environment.
</para></listitem>
<listitem><para>
<emphasis>Case 2 - Variables Set in the
<filename>Makefile</filename>:</emphasis>
Specifically setting variables in the
<filename>Makefile</filename> during the build results in
the environment settings of the variables being
overwritten.
</para></listitem>
<listitem><para>
<emphasis>Case 3 - Variables Set when the
<filename>Makefile</filename> is Executed from the
Command Line:</emphasis>
Executing the <filename>Makefile</filename> from the
command-line results in the variables being overwritten
with command-line content regardless of what is being set
in the <filename>Makefile</filename>.
In this case, environment variables are not considered
unless you use the "-e" flag during the build:
<literallayout class='monospaced'>
$ make -e <replaceable>file</replaceable>
</literallayout>
If you use this flag, then the environment values of the
variables override any variables specifically set in the
<filename>Makefile</filename>.
</para></listitem>
</itemizedlist>
<note>
For the list of variables set up by the cross-toolchain
environment setup script, see the
"<link linkend='sdk-running-the-sdk-environment-setup-script'>Running the SDK Environment Setup Script</link>"
section.
</note>
</para>
</section>
</chapter>
<!--
vim: expandtab tw=80 ts=4
-->